The first step is to find the slope of the given line by putting its equation in the form y = mx + b.
9y = x - 18
Dividing both sides by 9, gives:
y = (x/9) - 2
The slope of the given line is therefore 1/9.
Let the slope of the perpendicular line be m.
The product of the two slopes must equal -1 for the lines to be perpendicular.

Therefore m = -9.
At this stage the equation of the required line is y = -9x + b.
Now we need to find the value of b.
Plugging the given values of a point on the line (6, -1) into the equation gives:
-1 = -54 + b; from which b = 53.
The required equation for the line is:
f(x) = -9x + 53.
Answer:
Z= 0.253
Z∝/2 = ± 1.96
Step-by-step explanation:
Formulate the null and alternative hypotheses as
H0 : u1= u2 against Ha : u1≠ u2 This is a two sided test
Here ∝= 0.005
For alpha by 2 for a two tailed test Z∝/2 = ± 1.96
Standard deviation = s= 15
n= 10
The test statistic used here is
Z = x- x`/ s/√n
Z= 2058- 2046 / 15 / √10
Z= 0.253
Since the calculated value of Z= 0.253 falls in the critical region we reject the null hypothesis.
There is evidence at the 0.05 level that the doors are too short and unusable.
Answer:
8.2
Step-by-step explanation:
w-x+z
-2.1-(-7)+3.3
-2.1+7+3.3
8.2
Hope this helps!
11 plus what number equals 16 in order to complete your problem.