Answer:
157.79 g
Explanation:
The definition of molality is:
- molality = moles of solute / kilogram of solvent
This means that in a 2.7 molal solution, there are 2.7 moles of NaCl per kilogram of water.
So now w<u>e convert those 2.7 moles of NaCl to grams</u>, using its <em>molar mass</em>:
- 2.7 mol * 58.44 g/mol = 157.79 g
Answer:
ΔU = −55.45 kJ
Explanation:
From first law of thermodynamics in chemistry, we have;
ΔU = Q + W
where;
ΔU is change in internal energy
Q is the net heat transfer
W is the net work done
We are given;
Q = 74.6 kJ
But Q will be negative since heat is released
Thus;
ΔU = -74.6 kJ + W
We are given;
Constant pressure; P = 35 atm = 35 × 101325 = 3546375 N/m²
Volume before reaction; Vi = 8.2 L = 0.0082 m³
Volume after reaction; V_f = 2.8 L = 0.0028 m³
Now,
W = -P(V_f - V_i)
W = - 3546375(0.0028 - 0.0082)
W = 19.15 KJ
Thus;
ΔU = Q + W
ΔU = -74.6 kJ + 19.15 KJ =
ΔU = −55.45 kJ
Missing question: Write the net ionic equation for the precipitation reaction that occurs when aqueous solutions of ammonium carbonate and cobalt(II) bromide are combined.<span>Balanced chemical reaction:
(NH</span>₄)₂CO₃(aq) + CoBr₂(aq) → CoCO₃(s) + 2NH₄Br(aq).
Net ionic reaction:
2NH₄⁺(aq) + CO²⁻(aq) + Co²⁺(aq) + 2Br⁻(aq) → CoCO₃ + 2NH₄(aq)+ 2Br(aq).
or CO²⁻(aq) + Co²⁺(aq) → CoCO₃(s).
Answer:

Explanation:
Hello,
In this case, during titration at the equivalence point, we find that the moles of the base equals the moles of the acid:

That it terms of molarities and volumes we have:

Next, solving for the volume of lithium hydroxide we obtain:

Best regards.