The little dipper is located in Ursa Minor you would also get a clue because... Minor and little
Electrons can gain the energy it needs by absorbing light. If the electron jumps from the second energy level down to the first energy level, it must give off some energy by emitting light. The atom absorbs or emits light in discrete packets called photons, and each photon has a definite energy.
To get the percent yield, we will use this formula:
((Actual Yield)/(Theoretical Yield)) * 100%
Values given: actual yield is 220.0 g
theoretical yield is 275.6 g
Now, let us substitute the values given.
(220.0 grams)/(275.6 grams) = 0.7983
Then, to get the percentage, multiply the quotient by 100.
0.7983 (100) = 79.83%
Among the choices, the most plausible answer is 79.8%
<span>
</span>
Answer:
We are given:
Volume (V) = 0.25 L
Pressure (P) = 0.93 atm
Temperature (T) = 15.4°C OR 288.4 K
<u>Solving for the number of moles of CO₂:</u>
From the ideal gas equation:
PV = nRT
replacing the variables
0.93 * 0.25 = n (0.082)(288.4)
n = 0.00983 moles
<u>Number of molecules:</u>
Number of moles= 0.00983
number of molecules in 1 mole = 6.022 * 10²³
Number of molecules in 0.00983 moles = 0.00983 * 6.022 * 10²³
Number of molecules = 5.91 * 10²¹