Answer:
see below
Explanation:
The rate constant is missing in question, but use C(final) = C(initial)e^-kt = 0.200M(e^-k·10). Fill in k and compute => remaining concentration of reactant
Answer:
False
Explanation:
Heres what its made of:
The core is made of hot, dense plasma (ions and electrons), at a pressure estimated at 265 billion bar (3.84 trillion psi or 26.5 petapascals (PPa)) at the center. Due to fusion, the composition of the solar plasma drops from 68–70% hydrogen by mass at the outer core, to 34% hydrogen at the core/Sun center.
Answer:
0.550
Explanation:
The absorbance (A) of a substance depends on its concentration (c) according to Beer-Lambert law.
A = ε . <em>l</em> . c
where,
ε: absorptivity of the species
<em>l</em>: optical path length
A 45 mM phosphate solution (solution A) had an absorbance of 1.012.
A = ε . <em>l</em> . c
1.012 = ε . <em>l</em> . 45 mM
ε . <em>l</em> = 0.022 mM⁻¹
We can find the concentration of the second solution using the dilution rule.
C₁ . V₁ = C₂ . V₂
45mM . 11mL = C₂ . 20.0 mL
C₂ = 25 mM
The absorbance of the second solution is:
A = (ε . <em>l</em> ). c
A = (0.022 mM⁻¹) . 25 mM = 0.55 (rounding off to 3 significant figures = 0.550)