Answer:
<em>Center: (3,3)</em>
<em>Radius: </em>
<em />
Step-by-step explanation:
<u>Midpoint and Distance Between two Points</u>
Given two points A(x1,y1) and B(x2,y2), the midpoint M(xm,ym) between A and B has the following coordinates:


The distance between both points is given by:

Point (5,7) is the center of circle A, and point (1,-1) is the center of the circle B. Given both points belong to circle C, the center of C must be the midpoint from A to B:


Center of circle C: (3,3)
The radius of C is half the distance between A and B:


The radius of C is d/2:

Center: (3,3)
Radius: 
Answer:
What are the options?
Step-by-step explanation:
Answer:
Option D RX=4 units
Step-by-step explanation:
we know that
<em>In the right triangle RTS</em>
The cosine of angle TRS is equal to
cos(TRS)=RT/RS
substitute
cos(TRS)=6/9 -----> equation A
<em>In the right triangle RTX</em>
The cosine of angle TRX is equal to
cos(TRX)=RX/RT
substitute
cos(TRX)=RX/6 -----> equation B
∠TRS=∠TRX -----> is the same angle
Match equation A and equation B
6/9=RX/6
RX=6*6/9=4 units
The answer to number 18 is - 0.25 or 1/4
If you need help with the other ones ask.
<em>Hope this will help :)</em>