1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nesterboy [21]
3 years ago
15

I guess I'm lacking in differential equations. I couldn't solve this question. Can you help me?

Mathematics
2 answers:
Sonja [21]3 years ago
8 0

Answer:

See Explanation.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Equality Properties
  • Reciprocals

<u>Algebra II</u>

  • Log/Ln Property: ln(\frac{a}{b} ) = ln(a) - ln(b)

<u>Calculus</u>

Derivatives

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Derivative of Ln: \frac{d}{dx} [ln(u)] = \frac{u'}{u}

Step-by-step explanation:

<u>Step 1: Define</u>

ln(\frac{2x-1}{x-1} )=t

<u>Step 2: Differentiate</u>

  1. Rewrite:                                                                                                         t = ln(\frac{2x-1}{x-1})
  2. Rewrite [Ln Properties]:                                                                                 t = ln(2x-1) - ln(x - 1)
  3. Differentiate [Ln/Chain Rule/Basic Power Rule]:                                         \frac{dt}{dx} = \frac{1}{2x-1} \cdot 2 - \frac{1}{x-1} \cdot 1
  4. Simplify:                                                                                                          \frac{dt}{dx} = \frac{2}{2x-1} - \frac{1}{x-1}
  5. Rewrite:                                                                                                          \frac{dt}{dx} = \frac{2(x-1)}{(2x-1)(x-1)} - \frac{2x-1}{(2x-1)(x-1)}
  6. Combine:                                                                                                       \frac{dt}{dx} = \frac{-1}{(2x-1)(x-1)}
  7. Reciprocate:                                                                                                  \frac{dx}{dt} = -(2x-1)(x-1)
  8. Distribute:                                                                                                         \frac{dx}{dt} = (1-2x)(x-1)
zubka84 [21]3 years ago
3 0

Answer:

See below.

Step-by-step explanation:

We are given \displaystyle ln \Big ( \frac{2x-1}{x-1} \Big ) = t and we want to find the first derivative of this function.

We can use the derivative of any function inside a natural log, denoted by \displaystyle \frac{d}{dx} \text{ln} \ u =   \frac{\frac{d}{dx} u}{u}, where u represents any function.

Let's take the derivative of the whole function with respect to x. This will look like:

  • \displaystyle \frac{d}{dx} \displaystyle \Big [ ln \Big ( \frac{2x-1}{x-1} \Big ) = t \Big ] =   \frac{\frac{d}{dx} (\frac{2x-1}{x-1}) }{\frac{2x-1}{x-1} } = \frac{dt}{dx}

Let's take the derivative of the inside function, \displaystyle \frac{2x-1}{x-1}, first. We will need the quotient rule, which is:

  • \displaystyle \frac{d}{dx} \Big [ \frac{f(x)}{g(x)} \Big] = \frac{g(x) \cdot \frac{d}{dx}f(x)-f(x)\cdot \frac{d}{dx}g(x)  }{[g(x)]^2}

Here we have f(x) = 2x - 1 and g(x) = x - 1. Let's plug these values into the formula above:

  • \displaystyle \frac{d}{dx} \Big [ \frac{2x-1}{x-1} \Big ] = \frac{[(x-1)\cdot 2 ] - [(2x-1) \cdot 1]}{(x-1)^2}  
  • \displaystyle \frac{d}{dx} \Big [ \frac{2x-1}{x-1} \Big ] = \frac{2x-2-2x+1}{(x-1)^2}
  • \displaystyle \frac{d}{dx} \Big [ \frac{2x-1}{x-1} \Big ] = \frac{-1}{(x-1)^2}

Now, we can substitute this back into the original equation for the derivative of the entire function.

  • \displaystyle  \frac{dt}{dx} = \frac{\frac{-1}{(x-1)^2} }{\frac{2x-1}{x-1} }  

Multiply the numerator by the reciprocal of the denominator.

  • \displaystyle \frac{dt}{dx} =  \frac{-1}{(x-1)^2} \cdot \frac{x-1}{2x-1}

The (x - 1)'s cancel out and we are left with:

  • \displaystyle \frac{dt}{dx} =  \frac{-1}{(x-1)} \cdot \frac{1}{2x-1}

This can be further simplified to a single fraction:

  • \displaystyle \frac{dt}{dx} =\frac{-1}{(x-1)(2x-1)}  

Now we have dt/dx, but we want to find dx/dt. Therefore, we can flip the equation and have it in terms of dx/dt:

  • \displaystyle \frac{dx}{dt} =\frac{(x-1)(2x-1)}{-1}
  • \displaystyle \frac{dx}{dt} =-(x-1)(2x-1)

This can be further simplified to fit the expression the problem gives for dx/dt:

  • \displaystyle \frac{dx}{dt} =(x-1)(1-2x)

This is equivalent to the equation in the problem; therefore, the verification is complete.

You might be interested in
Which of the following sets of measurements can form exactly 1 triangle..1)a=12,b=27, A=37 degrees..2)a=11,b=15,A=36 degrees.3)a
zhuklara [117]

Answer:

1

Step-by-step explanation:

you grab to different angles and add them up, they have to be greater than the last angle. you must check all different combinations

3 0
3 years ago
6 divided by 2 (1 2)=?
Tom [10]
36 is the answer......
4 0
3 years ago
Gas mileage is the number of miles you can drive on a gallon of gasoline. A test of a new car result is 380 miles on 20 gallons
SOVA2 [1]

380/20 = 19

The car can go 19 miles on 1 gallon of gas.

75 * 19 = 1,425

You can drive 1,425 miles on 75 gallons.

6 0
3 years ago
Find the derivative of ((t^4-6)^3)*((t^3+6)^4)
rjkz [21]
=d/dx((t^4-6)^3) * (t^3+6)^4 + d/dx((t^3+6)^4) * (t^4-6)^3
=3*(t^4-6)^2 * (t^3+6)^4 * d/dx(t^4-6) + 4*(t^3+6)^3 * (t^4-6)^3 * d/dx(t^3+6)
=3*(t^4-6)^2 * (t^3+6)^4 * 4t^3 + 4*(t^3+6)^3 * (t^4-6)^3 * 3t^2
Simplify that if youd like
8 0
4 years ago
A garden table and a bench cost $618 combined. The garden table costs $82 less than the bench. What is the cost of the bench?
finlep [7]

Answer:

268

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Other questions:
  • Fill in the missing reason for the proof.
    11·2 answers
  • A math club has 100 members. 60 members are boys and the rest are gins What is the ratio of boys lo ALL club members?​
    12·2 answers
  • 16-r/7 =21<br> Help asap please!!!!
    5·1 answer
  • I don't get how to work out the repeating problems, could someone explain please?
    8·1 answer
  • What is the slope of the line?
    5·2 answers
  • Six less than six times a number is 12 this is writing two step equations.
    13·1 answer
  • A zoo with a total area of 982.31 acres is home to a variety of animals. If 964.36 acres have been
    10·2 answers
  • Pls help i need to know if this is right i got 7d+50
    12·2 answers
  • Can someone help me with this circle geometry question ty
    13·1 answer
  • Select the graph that best represents the given table of values.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!