1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nesterboy [21]
3 years ago
15

I guess I'm lacking in differential equations. I couldn't solve this question. Can you help me?

Mathematics
2 answers:
Sonja [21]3 years ago
8 0

Answer:

See Explanation.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Equality Properties
  • Reciprocals

<u>Algebra II</u>

  • Log/Ln Property: ln(\frac{a}{b} ) = ln(a) - ln(b)

<u>Calculus</u>

Derivatives

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Derivative of Ln: \frac{d}{dx} [ln(u)] = \frac{u'}{u}

Step-by-step explanation:

<u>Step 1: Define</u>

ln(\frac{2x-1}{x-1} )=t

<u>Step 2: Differentiate</u>

  1. Rewrite:                                                                                                         t = ln(\frac{2x-1}{x-1})
  2. Rewrite [Ln Properties]:                                                                                 t = ln(2x-1) - ln(x - 1)
  3. Differentiate [Ln/Chain Rule/Basic Power Rule]:                                         \frac{dt}{dx} = \frac{1}{2x-1} \cdot 2 - \frac{1}{x-1} \cdot 1
  4. Simplify:                                                                                                          \frac{dt}{dx} = \frac{2}{2x-1} - \frac{1}{x-1}
  5. Rewrite:                                                                                                          \frac{dt}{dx} = \frac{2(x-1)}{(2x-1)(x-1)} - \frac{2x-1}{(2x-1)(x-1)}
  6. Combine:                                                                                                       \frac{dt}{dx} = \frac{-1}{(2x-1)(x-1)}
  7. Reciprocate:                                                                                                  \frac{dx}{dt} = -(2x-1)(x-1)
  8. Distribute:                                                                                                         \frac{dx}{dt} = (1-2x)(x-1)
zubka84 [21]3 years ago
3 0

Answer:

See below.

Step-by-step explanation:

We are given \displaystyle ln \Big ( \frac{2x-1}{x-1} \Big ) = t and we want to find the first derivative of this function.

We can use the derivative of any function inside a natural log, denoted by \displaystyle \frac{d}{dx} \text{ln} \ u =   \frac{\frac{d}{dx} u}{u}, where u represents any function.

Let's take the derivative of the whole function with respect to x. This will look like:

  • \displaystyle \frac{d}{dx} \displaystyle \Big [ ln \Big ( \frac{2x-1}{x-1} \Big ) = t \Big ] =   \frac{\frac{d}{dx} (\frac{2x-1}{x-1}) }{\frac{2x-1}{x-1} } = \frac{dt}{dx}

Let's take the derivative of the inside function, \displaystyle \frac{2x-1}{x-1}, first. We will need the quotient rule, which is:

  • \displaystyle \frac{d}{dx} \Big [ \frac{f(x)}{g(x)} \Big] = \frac{g(x) \cdot \frac{d}{dx}f(x)-f(x)\cdot \frac{d}{dx}g(x)  }{[g(x)]^2}

Here we have f(x) = 2x - 1 and g(x) = x - 1. Let's plug these values into the formula above:

  • \displaystyle \frac{d}{dx} \Big [ \frac{2x-1}{x-1} \Big ] = \frac{[(x-1)\cdot 2 ] - [(2x-1) \cdot 1]}{(x-1)^2}  
  • \displaystyle \frac{d}{dx} \Big [ \frac{2x-1}{x-1} \Big ] = \frac{2x-2-2x+1}{(x-1)^2}
  • \displaystyle \frac{d}{dx} \Big [ \frac{2x-1}{x-1} \Big ] = \frac{-1}{(x-1)^2}

Now, we can substitute this back into the original equation for the derivative of the entire function.

  • \displaystyle  \frac{dt}{dx} = \frac{\frac{-1}{(x-1)^2} }{\frac{2x-1}{x-1} }  

Multiply the numerator by the reciprocal of the denominator.

  • \displaystyle \frac{dt}{dx} =  \frac{-1}{(x-1)^2} \cdot \frac{x-1}{2x-1}

The (x - 1)'s cancel out and we are left with:

  • \displaystyle \frac{dt}{dx} =  \frac{-1}{(x-1)} \cdot \frac{1}{2x-1}

This can be further simplified to a single fraction:

  • \displaystyle \frac{dt}{dx} =\frac{-1}{(x-1)(2x-1)}  

Now we have dt/dx, but we want to find dx/dt. Therefore, we can flip the equation and have it in terms of dx/dt:

  • \displaystyle \frac{dx}{dt} =\frac{(x-1)(2x-1)}{-1}
  • \displaystyle \frac{dx}{dt} =-(x-1)(2x-1)

This can be further simplified to fit the expression the problem gives for dx/dt:

  • \displaystyle \frac{dx}{dt} =(x-1)(1-2x)

This is equivalent to the equation in the problem; therefore, the verification is complete.

You might be interested in
Factored form of 2x*2+13x+20
cricket20 [7]

Answer:

(2x+5)(x+4)

Step-by-step explanation:

After factoring we can find that it equals

(2x+5)(x+4)

6 0
2 years ago
Read 2 more answers
1. What is the constant of variation for the relationship f(x) = 40x?
yKpoI14uk [10]
1. The coefficient of x is the constant of variation. It is 40.

2. -12 = -2*6 . . . . . you know this because you know your times tables
.. f(x) = -2x
8 0
3 years ago
A metalworker has a metal alloy that is 20​% copper and another alloy that is 75​% copper. How many kilograms of each alloy shou
Molodets [167]
That's the answer to your question

4 0
3 years ago
Factorise this expression 14a+49 with brackets
12345 [234]

Answer:

7(2a +7)

Step-by-step explanation:

14a+49\\=7\times 2a+7\times 7\\= 7(2a +7)

3 0
3 years ago
A company that teaches self-improvement seminars is holding one of its seminars in Middletown. The company pays a flat fee of $1
Nutka1998 [239]

Answers:

To reach the breakeven point, how many attendees will that take?  <u>   117   </u>

What will be the company's total expenses and revenues?  <u>    $1755  for each   </u>

=============================================================

Explanation:

x = number of attendees

C(x) = cost function for the company

C(x) = 14x+117

This is because the company pays $14 per person, so x of them accounts for 14x dollars. Then we add on the flat fee of $117 to get 14x+117 dollars overall.

In contrast, the revenue is

R(x) = 15x

because each attendee brings in $15 for the company

The breakeven point is when the cost and revenue are the same. This produces a profit of $0.

R(x) = C(x)

15x = 14x+117

15x-14x = 117

x = 117

If 117 people attend the seminar, then the company breaks even.

To check this, we'll compute the cost and revenue

C(x) = 14x+117

C(117) = 14*117+117

C(117) = 1755

R(x) = 15x

R(117) = 15*117

R(117) =  1755

The cost and revenue is $1755 for each. Because we get the same value, this confirms the correct x value.

Since 117 people is the breakeven point, the company should aim for an attendee count above this, so they can get a positive profit. At some point, there is a max capacity so x can't go up forever.

7 0
2 years ago
Other questions:
  • What to numbers multiply to -100 but add up to -21?
    14·1 answer
  • How do you solve for total intrest when you finance $600 for 24 months at 18%
    9·2 answers
  • a plate has a raduis of 3 inches what is the best approximation for the circumference of the plate ? use 3.14 to approimate pi.​
    15·1 answer
  • Graph the function y = -1x +3.​
    5·1 answer
  • Which greatest value 1.83 or 2.22 or 2.01
    10·2 answers
  • Help help help help help
    13·2 answers
  • I need two answers <br> -4c+25+c=3c+79
    15·2 answers
  • Solve for x.<br><br> x/3 ≤ −6<br><br><br><br> x≤−18<br> x≤−2<br> x≥−18<br> x≥−2
    9·2 answers
  • 99 POINTS IF U ANSWER BOTH RIGHT
    5·1 answer
  • PLS HELP WILL GIVE BRAINLIEST
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!