1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nesterboy [21]
3 years ago
15

I guess I'm lacking in differential equations. I couldn't solve this question. Can you help me?

Mathematics
2 answers:
Sonja [21]3 years ago
8 0

Answer:

See Explanation.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Equality Properties
  • Reciprocals

<u>Algebra II</u>

  • Log/Ln Property: ln(\frac{a}{b} ) = ln(a) - ln(b)

<u>Calculus</u>

Derivatives

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Derivative of Ln: \frac{d}{dx} [ln(u)] = \frac{u'}{u}

Step-by-step explanation:

<u>Step 1: Define</u>

ln(\frac{2x-1}{x-1} )=t

<u>Step 2: Differentiate</u>

  1. Rewrite:                                                                                                         t = ln(\frac{2x-1}{x-1})
  2. Rewrite [Ln Properties]:                                                                                 t = ln(2x-1) - ln(x - 1)
  3. Differentiate [Ln/Chain Rule/Basic Power Rule]:                                         \frac{dt}{dx} = \frac{1}{2x-1} \cdot 2 - \frac{1}{x-1} \cdot 1
  4. Simplify:                                                                                                          \frac{dt}{dx} = \frac{2}{2x-1} - \frac{1}{x-1}
  5. Rewrite:                                                                                                          \frac{dt}{dx} = \frac{2(x-1)}{(2x-1)(x-1)} - \frac{2x-1}{(2x-1)(x-1)}
  6. Combine:                                                                                                       \frac{dt}{dx} = \frac{-1}{(2x-1)(x-1)}
  7. Reciprocate:                                                                                                  \frac{dx}{dt} = -(2x-1)(x-1)
  8. Distribute:                                                                                                         \frac{dx}{dt} = (1-2x)(x-1)
zubka84 [21]3 years ago
3 0

Answer:

See below.

Step-by-step explanation:

We are given \displaystyle ln \Big ( \frac{2x-1}{x-1} \Big ) = t and we want to find the first derivative of this function.

We can use the derivative of any function inside a natural log, denoted by \displaystyle \frac{d}{dx} \text{ln} \ u =   \frac{\frac{d}{dx} u}{u}, where u represents any function.

Let's take the derivative of the whole function with respect to x. This will look like:

  • \displaystyle \frac{d}{dx} \displaystyle \Big [ ln \Big ( \frac{2x-1}{x-1} \Big ) = t \Big ] =   \frac{\frac{d}{dx} (\frac{2x-1}{x-1}) }{\frac{2x-1}{x-1} } = \frac{dt}{dx}

Let's take the derivative of the inside function, \displaystyle \frac{2x-1}{x-1}, first. We will need the quotient rule, which is:

  • \displaystyle \frac{d}{dx} \Big [ \frac{f(x)}{g(x)} \Big] = \frac{g(x) \cdot \frac{d}{dx}f(x)-f(x)\cdot \frac{d}{dx}g(x)  }{[g(x)]^2}

Here we have f(x) = 2x - 1 and g(x) = x - 1. Let's plug these values into the formula above:

  • \displaystyle \frac{d}{dx} \Big [ \frac{2x-1}{x-1} \Big ] = \frac{[(x-1)\cdot 2 ] - [(2x-1) \cdot 1]}{(x-1)^2}  
  • \displaystyle \frac{d}{dx} \Big [ \frac{2x-1}{x-1} \Big ] = \frac{2x-2-2x+1}{(x-1)^2}
  • \displaystyle \frac{d}{dx} \Big [ \frac{2x-1}{x-1} \Big ] = \frac{-1}{(x-1)^2}

Now, we can substitute this back into the original equation for the derivative of the entire function.

  • \displaystyle  \frac{dt}{dx} = \frac{\frac{-1}{(x-1)^2} }{\frac{2x-1}{x-1} }  

Multiply the numerator by the reciprocal of the denominator.

  • \displaystyle \frac{dt}{dx} =  \frac{-1}{(x-1)^2} \cdot \frac{x-1}{2x-1}

The (x - 1)'s cancel out and we are left with:

  • \displaystyle \frac{dt}{dx} =  \frac{-1}{(x-1)} \cdot \frac{1}{2x-1}

This can be further simplified to a single fraction:

  • \displaystyle \frac{dt}{dx} =\frac{-1}{(x-1)(2x-1)}  

Now we have dt/dx, but we want to find dx/dt. Therefore, we can flip the equation and have it in terms of dx/dt:

  • \displaystyle \frac{dx}{dt} =\frac{(x-1)(2x-1)}{-1}
  • \displaystyle \frac{dx}{dt} =-(x-1)(2x-1)

This can be further simplified to fit the expression the problem gives for dx/dt:

  • \displaystyle \frac{dx}{dt} =(x-1)(1-2x)

This is equivalent to the equation in the problem; therefore, the verification is complete.

You might be interested in
Juan compró un terreno rectangular cuyo perímetro es de 88 m. Se sabe que la medida de lo largo del terreno es 2veces la medida
Nuetrik [128]

Answer:

420 m^2

Step-by-step explanation:

Ancho: x

Largo: 2x + 2

2x + 2(2x+2) = 88

2x + 4x + 4 = 88

6x = 88 - 4

x = 84/6

x = 14

Ancho: 14

Largo : 30

Area: 14 * 30 = 420 metros cuadrados

5 0
2 years ago
Solve for the given variable:<br> 14=63n
marin [14]

Answer:

n = 2/9

Step-by-step explanation:

switch sides: 63n=14

divide both sides by 63: 63n/63 = 14/63

simplify: n = 2 / 9

3 0
3 years ago
The Ferris wheel shown makes 16 revolutions per ride. How far would someone travel during one ride? Round your final answer to t
sertanlavr [38]

Complete question :

The diameter of the ferris Given is 63 feets

Answer:

3165 feets

Step-by-step explanation:

Given that :

Diameter of ferris = 63 feets

Recall :

Circumference of a circle = 2 * pi * Radius

Or

Circumference = pi * d

Hence,

Circumference of wheel = 3.14 * 63 = 197.82 feets

Distance traveled during one ride :

Circumference of wheel * number of revolutions

197.82 * 16 = 3165.12

= 3165 feets (nearest whole number)

4 0
3 years ago
The answer is 915 / 7
Naily [24]

Answer:

If you want 915/7 simplified, it is 130.714285714.

Step-by-step explanation:

5 0
4 years ago
Read 2 more answers
Do you need to restrict the domain of hte inverse of a cubic function
aalyn [17]
I dont believe so but im not 100% sure i hoped i helped
3 0
3 years ago
Other questions:
  • The last answer I got for this was not help full. Please help. Will give brainliest.
    14·1 answer
  • All of the students in Ms. Osbourne's class like pizza. Jeff is a student who likes pizza. Therefore, Jeff is a student in Ms. O
    15·1 answer
  • Write a function rule for the table be quick plzz
    9·1 answer
  • If p∨q is true, then what must be true about the truth values of p and q?
    10·2 answers
  • Plz help!!!<br> Solve 6 (u - 4) - 8 = -6 (-4u + 6) -2u<br> Combine like-terms before solving
    7·1 answer
  • Please help meeeeeee
    10·1 answer
  • Solve system by elimination <br> -2x+2y =2<br> 4x-4y=4
    12·1 answer
  • 11. A surveyor is 100 meters from a bridge. The angle of elevation to the top of the bridge is 35º. The
    5·1 answer
  • How to slove for compound inequalities
    6·1 answer
  • The decorating committee for a school
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!