Properties of metals:
High melting points
High density
Ductile
Malleable
Good conductors of electricity
Good conductors of heat
I think if you added a proton you would have chlorine.
The noble gasses are the he chemical elements in group 18 of the periodic table. The gasses in this family include helium, neon, argon, krypton, xenon, and radon. All these gasses are colorless are oderless, elements in this family have atoms with a full outer shell of electrons. They are also called inert gasses.
Six valence electrons
Answer:
The volume of the gas is 2.80 L.
Explanation:
An ideal gas is a theoretical gas that is considered to be made up of point particles that move randomly and do not interact with each other. Gases in general are ideal when they are at high temperatures and low pressures.
The Pressure (P) of a gas on the walls of the container that contains it, the Volume (V) it occupies, the Temperature (T) at which it is located and the amount of substance it contains (number of moles, n) are related from the equation known as Equation of State of Ideal Gases:
P*V = n*R*T
where R is the constant of ideal gases.
In this case:
- P= 2 atm
- V= ?
- n=0.223 moles
- R= 0.0821

- T=33 °C= 306 °K (being O°C= 273°K)
Replacing:
2 atm* V= 0.223 moles*0.0821
* 306 K
Solving:

V= 2.80 L
<u><em>The volume of the gas is 2.80 L.</em></u>
The answer is (2) equal to. In redox reactions, you can't just lose electrons somewhere. If an electrons is lost by one, it must be gained by another. Hence, the importance of balancing redox reactions.
<u>Explanation:</u>
<u>1. Have many moons:</u>
- Jupiter is the fifth planet from the Sun and the biggest in the Solar System and it has fifty-three moons which are confirmed and twenty-six provisional moons and totally it has seventy-nine moons and it is the only planet which has many moons.
<u>2. Have a rocky composition:</u>
- The planets which have rocky composition are also called the terrestrial planets.
- The planets which have rocky composition are listed below mercury, venus, earth, and mars and they are smaller in size.
<u>3. Revolve quickly around the Sun: </u>
- Mercury is the quickest planet, which rushes around the sun at 47.87 km/s. And it revolves around the sun quickly.
<u> 4. Rotate quickly on their axes: </u>
- The giant gas planets like Jupiter, Saturn, etc... spin more quickly on their axes than the other planets
The heat from the hotter water will go into the colder water untl equilibrium is reached. Equilibrium is same temperature!
Now, the heat is proportional to the mass, the specific heat and the temperature difference. The specific heat does not matter since all is water, it will cancel out:
m_1 * c_H20 * ( T_final - T_1 ) = -m_2 * c_H20 * ( T_final - T_2)
Notice the minus, because one wins the heat of the one who loses it. In this way both sides have the same sign:
m_1*(T_final - T_1)=-m_2*(T_final-T_2), or after some simple algebra:
T_final = (m_1 * T_1 + m_2 * T_2 )/(m_1+m_2),
which looks like an arithmetic mean, and one could have gone for this, but the above shows all the work. Notice that if T_1=T_2, T_final=T_1 always, which makes sense.
Now you can convert volume to mass with the density, but since mass = density*volume and it is all water, the density will cancel out and you can work with volumes. If you prefer just say: 120 ml->120 g , etc ...
T_final = (120*95+320*25)/(320+120)=44.0909 degrees Celsius, or ~ 44.09 degrees with two decimal precision as your statement (beware of precision always!).