1st law: Inertia, If you roll a ball it will not stop unless something blocks it by force.
2nd law: Force and Acceleration, when you’re riding a bike you are pushing the pedal with ur muscle which means you’re using force. Everytime you push the pedal the bike goes faster and faster which explains acceleration.
3rd law: Action and Reaction, If you run you’re feet pushes the ground (action) when your feet touches the ground it pushes you forward (reaction)
I'm not able to understand that what is written in the pic.. As I can't understand this language..
Treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Chemotherapy may be given by mouth, injection, or infusion, or on the skin, depending on the type and stage of the cancer being treated.
Answer:a lightbulb burning
Explanation:
Apex
Answer:
0.134 moles of H₂ can be formed if a 3.25g sample of Mg reacts with excess HCl
Explanation:
The balanced reaction is:
Mg + 2 HCl → MgCl₂ + H₂
By stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles react:
- Mg: 1 mole
- HCl: 2 moles
- MgCl₂: 1 mole
- H₂: 1 mole
Being:
- Mg: 24. 31 g/mole
- H: 1 g/mole
- Cl: 35.45 g/mole
the molar mass of the compounds participating in the reaction is:
- Mg: 24.31 g/mole
- HCl: 1 g/mole + 35.45 g/mole= 36.45 g/mole
- MgCl₂: 24.31 g/mole + 2*35.45 g/mole= 95.21 g/mole
- H₂: 2*1 g/mole= 2 g/mole
Then, by stoichiometry of the reaction, the following quantities of mass participate in the reaction:
- Mg: 1 mole* 24.31 g/mole= 24.31 g
- HCl: 2 moles* 36.45 g/mole= 72.9 g
- MgCl₂: 1 mole* 95.21 g/mole= 95.21 g
- H₂: 1 mole* 2 g/mole= 2 g
Then you can apply the following rule of three: if by stoichiometry 24.31 grams of Mg form 1 mole of H₂, 3.25 grams of Mg how many moles of H₂ will they form?

moles of H₂= 0.134
<u><em>0.134 moles of H₂ can be formed if a 3.25g sample of Mg reacts with excess HCl</em></u>