1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
liubo4ka [24]
3 years ago
11

What is the gum of 70 and 50

Mathematics
1 answer:
Scorpion4ik [409]3 years ago
6 0

Answer:

120 ? what this supposed to be about ? is it to estimate or subtract? does this have mutiple choices?  and what gum are their referring too ? the gum you chew or in your teeth?

You might be interested in
Ok, I am so sorry ,I rlly don't understand any of these things , can y'all help me with
melomori [17]

Answer:

x is 2.88 which can be rounded up to 2.9

Step-by-step explanation:

Subtract 2/3x from 5x.

Add 1/2 to 12.

Simplify and put into calculator (y=) to double check.

3 0
3 years ago
Adding and Subtracting with Rational Numbers
Pavel [41]

Answer:

-4.6 ft

Step-by-step explanation:

We need to learn to extract only the necessary information to answer question.  The surf shop and the restaurant is extra information.

Monday  1 pm    2.2 ft  

Monday 7 pm  - 2.4 ft

Net change  

-2.4 ft - 2.2 ft = -4.6 ft

The ocean went down 4.6 ft from 1 pm to 7 pm on Monday

4 0
3 years ago
Jose bought a plant. The height, h, of the plant is 2 feet. He noticed that every month, m,
Kipish [7]

Answer:

the answer is h=0.5m+2 I think

6 0
3 years ago
What is the solution to the equation 93x ≈ 7?
s344n2d4d5 [400]
Well, I do not know if you mean 93x = 7 or 9^3x = 7.
So, I will provide the solution for both cases.

In case of 93x = 7:
This case is simple, all you have to do is isolate the x. You need to get rid of the coefficient which is 93. You can simply do this by dividing both sides of the equation by 93 as follows:
93x = 7
93x / 93 = 7/93
x = 7/93

In case of 9^3x = 7:
Now, we need to get rid of the power. The only function that can do this is the log function.
So, we will start by taking log base 10 for both sides of the equation as follows:
9^3x = 7
log(9^3x) = log(7)
This will give:
3x * log(9) = log(7)
Now, the final step is to isolate the x as we did before. To do this, we will need to get rid of 3log(9). This can be done by dividing both sides of the equation by 3log(9) as follows:
3x * log(9) / 3log(9) = log(7) / 3log(9)
This will give us:
x = log(7) / 3log(9) = 0.2952

Hope this helps :)
5 0
4 years ago
Need help please its Calculus. Ill give the 5 stars as well.
algol13

Answer:

\displaystyle y = 2e^\bigg{\frac{x^3}{3}} + 1

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Order of Operations
  • Equality Properties

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}

<u>Algebra II</u>

  • Natural logarithms ln and Euler's number e

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Slope Fields

  • Separation of Variables
  • Solving Differentials

Integrals

  • Antiderivatives

Integration Constant C

Integration Rule [Reverse Power Rule]:                                                                   \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Addition/Subtraction]:                                                           \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Logarithmic Integration:                                                                                            \displaystyle \int {\frac{1}{u}} \, dx = ln|u| + C

Step-by-step explanation:

*Note:  

When solving differential equations in slope fields, disregard the integration constant C for variable y.

<u />

<u>Step 1: Define</u>

\displaystyle \frac{dy}{dx} = x^2(y - 1)

\displaystyle f(0) = 3

<u>Step 2: Rewrite</u>

<em>Separation of Variables. Get differential equation to a form where we can integrate both sides and rewrite Leibniz Notation.</em>

  1. [Separation of Variables] Rewrite Leibniz Notation:                                      \displaystyle dy = x^2(y - 1) \ dx
  2. [Separation of Variables] Isolate <em>y</em>'s together:                                               \displaystyle \frac{1}{y - 1} \ dy = x^2 \ dx

<u>Step 3: Find General Solution Pt. 1</u>

  1. [Differential] Integrate both sides:                                                                   \displaystyle \int {\frac{1}{y - 1}} \, dy = \int {x^2} \, dx
  2. [dx Integral] Integrate [Integration Rule - Reverse Power Rule]:                   \displaystyle \int {\frac{1}{y - 1}} \, dy = \frac{x^3}{3} + C

<u>Step 4: Find General Solution Pt. 2</u>

<em>Identify variables for u-substitution for dy.</em>

  1. Set:                                                                                                                    \displaystyle u = y - 1
  2. Differentiate [Basic Power Rule]:                                                                     \displaystyle du = dy

<u>Step 5: Find General Solution Pt. 3</u>

  1. [dy Integral] U-Substitution:                                                                             \displaystyle \int {\frac{1}{u}} \, du = \frac{x^3}{3} + C
  2. [dy Integral] Integrate [Logarithmic Integration]:                                            \displaystyle ln|u| = \frac{x^3}{3} + C
  3. [Equality Property] e both sides:                                                                     \displaystyle e^\bigg{ln|u|} = e^\bigg{\frac{x^3}{3} + C}
  4. Simplify:                                                                                                             \displaystyle |u| = Ce^\bigg{\frac{x^3}{3}}
  5. Rewrite:                                                                                                             \displaystyle u = \pm Ce^\bigg{\frac{x^3}{3}}
  6. Back-Substitute:                                                                                               \displaystyle y - 1 = \pm Ce^\bigg{\frac{x^3}{3}}
  7. [Equality Property] Isolate <em>y</em>:                                                                            \displaystyle y = \pm Ce^\bigg{\frac{x^3}{3}} + 1

General Form:  \displaystyle y = \pm Ce^\bigg{\frac{x^3}{3}} + 1

<u>Step 6: Find Particular Solution</u>

  1. Substitute in function values [General Form]:                                                \displaystyle 3 = \pm Ce^\bigg{\frac{0^3}{3}} + 1
  2. Simplify:                                                                                                             \displaystyle 3 = \pm C + 1
  3. [Equality Property] Isolate <em>C</em>:                                                                           \displaystyle 2 = \pm C
  4. Rewrite:                                                                                                             \displaystyle C = 2
  5. Substitute in <em>C</em> [General Form]:                                                                       \displaystyle y = 2e^\bigg{\frac{x^3}{3}} + 1

∴ our particular solution is  \displaystyle y = 2e^\bigg{\frac{x^3}{3}} + 1.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentials and Slope Fields

Book: College Calculus 10e  

6 0
3 years ago
Other questions:
  • A savings account has a 3% interest rate. (a) Complete the ratio table shown. Show your work. Deposit ($) 100 50 300 Interest ($
    7·2 answers
  • How do you write 15 cubed in exponential notation
    13·1 answer
  • Use the diagram at the right for questions 1 – 4.
    6·1 answer
  • Determine the constant of Proportionality in the situation below
    9·1 answer
  • Complete the following statement. Write
    14·2 answers
  • Which equation is 69 is greater than x
    7·1 answer
  • Solve this system of linear equations. Separate
    9·1 answer
  • mams buy 3 large sandwiches to serve at a picnic. 9 people come to the picnic. Show 3 different ways to cut the sandwich so that
    9·1 answer
  • Cooper has $200 in a savings account. The interest rate is 10% per year and is not compounded. How much interest will he earn in
    8·2 answers
  • Find the mean absolute deviation of the data below:<br><br> 7,4,7,7,2,10,12,8,7,5
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!