Answer:
y = 0.48(x - 0.5)² - 3
y = 0.48(x² - x - 6)
Step-by-step explanation:
From the graph the zeros are
x = {-2, 3}
The x coordinate of the vertex is the midpoint of the roots
x = (-2 + 3) / 2
x = 0.5
The y coordinate of the vertex is
y = -3
vertex = (0.5, -3)
--------------------------------------
Merhod I - vertex
Vertex form is
y = a(x - h)² + k
plug in the vertex
y = a(x - 0.5)² - 3
to find a plug in either root
using x = 3
0 = a(3 - 0.5)² - 3
0 = a(2.5)² - 3
0 = 6.25a - 3
3 = 6.25a
a = 3/6.25
a = 0.48
y = 0.48(x - 0.5)² - 3
-----------------------------
Method II - roots
y = a(x + 2)(x - 3)
-3 = a(0.5 + 2)(0.5 - 3)
-3 = a(2.5)(-2.5)
-3 = -6.25a
3/6.25 = a
0.48 = a
y = 0.48(x + 2)(x - 3)
Expand
y = 0.48(x² - x - 6)
Answer:
11, 13, 17, 19
Step-by-step explanation:
If you look at the prime numbers chart between 10 and 20, there are:
11, 13, 17, 19
Those are all of the prime numbers that are between 10 and 20.

Here , the given data is :
- Principal = Rs 4400 . ( P )
- Time = 3 years . ( T )
- Rate of Internet = 8% . ( R )
We can calculate Simple Interest using ,

On substituting the respective values ,
⇒ SI = P × R × T / 100.
⇒ SI = Rs 4400 × 8 × 3 / 100 .
⇒ SI = Rs 44 × 8 × 3 .
⇒ SI = Rs 1,056 .
<u>Hence</u><u> </u><u>the</u><u> </u><u>requ</u><u>ired</u><u> </u><u>Interest</u><u> </u><u>is</u><u> </u><u>Rs</u><u> </u><u>1</u><u>,</u><u>0</u><u>5</u><u>6</u><u>.</u>
Answer:
NANI?!
Step-by-step explanation: