<span>Simplifying
x4 = 16
Solving
x4 = 16
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Simplifying
x4 = 16
Reorder the terms:
-16 + x4 = 16 + -16
Combine like terms: 16 + -16 = 0
-16 + x4 = 0
Factor a difference between two squares.
(4 + x2)(-4 + x2) = 0
Factor a difference between two squares.
(4 + x2)((2 + x)(-2 + x)) = 0
Subproblem 1
Set the factor '(4 + x2)' equal to zero and attempt to solve:
Simplifying
4 + x2 = 0
Solving
4 + x2 = 0
Move all terms containing x to the left, all other terms to the right.
Add '-4' to each side of the equation.
4 + -4 + x2 = 0 + -4
Combine like terms: 4 + -4 = 0
0 + x2 = 0 + -4
x2 = 0 + -4
Combine like terms: 0 + -4 = -4
x2 = -4
Simplifying
x2 = -4
The solution to this equation could not be determined.
This subproblem is being ignored because a solution could not be determined.
Subproblem 2
Set the factor '(2 + x)' equal to zero and attempt to solve:
Simplifying
2 + x = 0
Solving
2 + x = 0
Move all terms containing x to the left, all other terms to the right.
Add '-2' to each side of the equation.
2 + -2 + x = 0 + -2
Combine like terms: 2 + -2 = 0
0 + x = 0 + -2
x = 0 + -2
Combine like terms: 0 + -2 = -2
x = -2
Simplifying
x = -2
Sub-problem 3
Set the factor '(-2 + x)' equal to zero and attempt to solve:
Simplifying
-2 + x = 0
Solving
-2 + x = 0
Move all terms containing x to the left, all other terms to the right.
Add '2' to each side of the equation.
-2 + 2 + x = 0 + 2
Combine like terms: -2 + 2 = 0
0 + x = 0 + 2
x = 0 + 2
Combine like terms: 0 + 2 = 2
x = 2
Simplifying
x = 2Solutionx = {-2, 2}</span>
Answer:
x is 66 degrees
Step-by-step explanation:
since its a isosceles, two of the angles should be the same.
You would do 300/5 since there are 300 catfish
Then multiply the resulting number (60) by 2
The answer is 120
Answer:
Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :
x-(3*x^3+8*x^2+5*x-7)=0
Step by step solution :Step 1 :Equation at the end of step 1 : x-((((3•(x3))+23x2)+5x)-7) = 0 Step 2 :Equation at the end of step 2 : x - (((3x3 + 23x2) + 5x) - 7) = 0 Step 3 :Step 4 :Pulling out like terms :
4.1 Pull out like factors :
-3x3 - 8x2 - 4x + 7 =
-1 • (3x3 + 8x2 + 4x - 7)
Checking for a perfect cube :
4.2 3x3 + 8x2 + 4x - 7 is not a perfect cube
Trying to factor by pulling out :
4.3 Factoring: 3x3 + 8x2 + 4x - 7
Thoughtfully split the expression at hand into groups, each group having two terms :
Group 1: 3x3 - 7
Group 2: 8x2 + 4x
Pull out from each group separately :
Group 1: (3x3 - 7) • (1)
Group 2: (2x + 1) • (4x)
Please 5 star and like. Appreciated
Answer:
35
Step-by-step explanation:
35