Answer: X=365/83 OR x= 4.39
Step-by-step explanation:
Answer:
Answer:5.86÷12=0.5 in nearest penny
Step-by-step explanation:this number kind of problem u solve it using inversely proportional method one one quantity is decreasing which is the ounce
Step-by-step explanation:
Answer:
1. 2/5,-3 2. 
Step-by-step explanation:
i used the quadratic formula to find x also please note that 2 has 2 answers bc of the +- beofre the sqrt of 13
Answer: Required expression:
Result: 
Step-by-step explanation:
Given phrase: 
Required expression:
['+' used to express sum, 'x' used in place of 'of']
Since 18+16 = 34
Then,
![\dfrac14\times(18+16)=\dfrac14\times34 \\\\=\dfrac{1}{2}\times17\ \ \text{[Divide numerator and denominator by 2]}\\\\=\dfrac{17}{2}](https://tex.z-dn.net/?f=%5Cdfrac14%5Ctimes%2818%2B16%29%3D%5Cdfrac14%5Ctimes34%20%20%5C%5C%5C%5C%3D%5Cdfrac%7B1%7D%7B2%7D%5Ctimes17%5C%20%5C%20%5Ctext%7B%5BDivide%20numerator%20and%20denominator%20by%202%5D%7D%5C%5C%5C%5C%3D%5Cdfrac%7B17%7D%7B2%7D)
Hence,
Answer:
Step-by-step explanation:
Hello!
The study variable is:
X: number of passengers that rest or sleep during a flight.
The sample taken is n=9 passengers and the probability of success, that is finding a passenger that either rested or sept during the flight, is p=0.80.
I'll use the binomial tables to calculate each probability, these tables give the values of accumulated probability: P(X≤x)
a. P(6)= P(X=6)
To reach the value of selecting exactly 6 passengers you have to look for the probability accumulated until 6 and subtract the probability accumulated until the previous integer:
P(X=6)= P(X≤6)-P(X≤5)= 0.2618-0.0856= 0.1762
b. P(9)= P(X=9)
To know the probability of selecting exactly 9 passengers that either rested or slept you have to do the following:
P(X≤9) - P(X≤8)= 1 - 0.8657= 0.1343
c. P(X≥6)
To know what percentage of the probability distribution is above six, you have to subtract from the total probability -1- the cumulated probability until 6 but without including it:
P(X≥6)= 1 - P(X<6)= 1 - P(X≤5)= 1 - 0.0856= 0.9144
I hope it helps!