Answer:
midpoint equation
Step-by-step explanation:
You would divide 4.6 from both sides of the inequality symbol to get x standing alone.
2 ways: Easy and hard
Hard=A
Easy=B
A: 1/2x+4
work from there so we do fun stuff with it
make something that can be simplified so
1/2x+4 times (2/2)=x+8
now square the whole thing and put the result in a square root thingie
(x+8)^2=x^2+16x+64

multiply the whole thing by 4/4 and put
![\sqrt{16} [\tex] on top so then [tex] \sqrt{x^2+16x+64}](https://tex.z-dn.net/?f=%20%5Csqrt%7B16%7D%20%5B%5Ctex%5D%20on%20top%20so%20then%20%0A%5Btex%5D%20%5Csqrt%7Bx%5E2%2B16x%2B64%7D%20)
times

=

=

to solve it, factor out the 16 in the square root and then square root 16 to get 4
then it will be (4 times square root of equation)/4=square root of equatio
factor square root of equation and square root it and get x+8
divide by 2 to get 1/2x+4
B: 1/2x+4
put stuff that cancels out
1/2x+3x-3x+4+56-56
move them around
3 and 1/2x-3x+60-56
or
2x-3x+1 and 1/2x+30-20+30-36
then just add like terms to solve
Answer:
The endpoints of the latus rectum are
and
.
Step-by-step explanation:
A parabola with vertex at point
and whose axis of symmetry is parallel to the y-axis is defined by the following formula:
(1)
Where:
- Independent variable.
- Dependent variable.
- Distance from vertex to the focus.
,
- Coordinates of the vertex.
The coordinates of the focus are represented by:
(2)
The <em>latus rectum</em> is a line segment parallel to the x-axis which contains the focus. If we know that
,
and
, then the latus rectum is between the following endpoints:
By (2):


By (1):



There are two solutions:




Hence, the endpoints of the latus rectum are
and
.