Moles of ammonium sulfide = 5.80 mol
The formula of ammonium sulfide is (NH₄)₂S
So each molecule of ammonium sulfide has (4 x 2) or 8 atoms of H
One mole of ammonium sulfide has 8 moles of H
5.80 mol of ammonium sulfide has (8 x 5.8) or 46.4 moles of H
As per the definition of Avogadro's number, 1 mole = 6.022 x 10²³ atoms
46.4 moles of H x (6.022 x 10²³ atoms/ 1 mole of H)
= 2.8 x 10²⁵ H atoms
Therefore, 2.8 x 10²⁵ H atoms are in 5.80 mol of ammonium sulfide.
Answer:
Molar mass of solute: 300g/mol
Explanation:
<em>Vapor pressure of pure benzene: 0.930 atm</em>
<em>Assuming you dissolve 10.0 g of the non-volatile solute in 78.11g of benzene and vapour pressure of solution was found to be 0.900atm</em>
<em />
It is possible to answer this question based on Raoult's law that states vapor pressure of an ideal solution is equal to mole fraction of the solvent multiplied to pressure of pure solvent:

Moles in 78.11g of benzene are:
78.11g benzene × (1mol / 78.11g) = <em>1 mol benzene</em>
Now, mole fraction replacing in Raoult's law is:
0.900atm / 0.930atm = <em>0.9677 = moles solvent / total moles</em>.
As mole of solvent is 1:
0.9677× total moles = 1 mole benzene.
Total moles:
1.033 total moles. Moles of solute are:
1.033 moles - 1.000 moles = <em>0.0333 moles</em>.
As molar mass is the mass of a substance in 1 mole. Molar mass of the solute is:
10.0g / 0.033moles = <em>300g/mol</em>
Answer:
only the wave energy of the water moves
Explanation:
The plan will not work due to the fact that only the wave energy of the water moves and not the water itself.
<em>The wave motion of water does not displace the water. It is only able to transfer energy from one point to another within the medium. Hence, the ball will hardly be displaced because the water itself does not move. However, it can get to the shore with the assistance of the water current.</em>
Answer:
true
Explanation:
you can't change it back, it's chemically changed
Answer:
<h2>0.73 g/cm³</h2>
Explanation:
The density of a substance can be found by using the formula

From the question we have

We have the final answer as
<h3>0.73 g/cm³</h3>
Hope this helps you