True. That is how powerful the sun is. But it will explode in only about 5 billion years.
For one thing, an object that is not moving has no momentum, no matter how much mass it has. Fast objects are also difficult to stop. Bullets have a very small mass, but you wouldn't want to try and stop one! More speed means more momentum - momentum is directly proportional to velocity
The answer is 12.5 kg because 250N / 20m/s^2
I hope that helped
Answer:

Explanation:
First, we write the equations of motion for each axis. Since the crate is sliding with constant speed, its acceleration is zero. Then, we have:

Where T is the tension in the rope, F is the force exerted by the first worker, f_k is the frictional force, N is the normal force and mg is the weight of the crate.
Since
and
, we can rewrite the first equation as:

Now, we solve for
and calculate it:

This means that the crate's coefficient of kinetic friction on the floor is 0.18.
Answer:
(A) 0.2306 m
(B) 1.467 Hz
(C) 0.1152 m
Explanation:
spring constant (K) = 16.4 N/m
mass (m) = 0.193 kg
acceleration due to gravity (g) = 9.8 m/s^{2}
(A) force = Kx, where x = extension
mg = Kx
0.193 x 9.8 = 16.4x
x = 0.1153 m
now the mass actually falls two times this value before it gets to its equilibrium position ( turning point ) and oscillates about this point
therefore
2x = 0.2306 m
(B) frequency (f) = \frac{1}{2π} x 
frequency (f) = \frac{1}{2π} x 
frequency = 1.467 Hz
(C) the amplitude is the maximum position of the mass from the equilibrium position, which is half the distance the mass falls below the initial length of the spring
= \frac{0.2306}{2} = 0.1152 m