<h2>Answer:</h2>
The diagram is not showing the second law of thermodynamics. It is the demonstration of 1st law of thermodynamics.
<h3>Explanation:</h3>
Second law of thermodynamics describes the entropy of the system increase with time, it does not decrease with time. It is constant for ideal systems.
While in first law of thermodynamics, it is stated that the energy of a system can not be lost but it is transferred from one form to other form.
And in this picture, it is shown that the energy released from heat source to cold sink is used in doing work.
Work and heat are forms of energy.
first is gamma Ray's, last is d
Answer:
The width of the central bright fringe is 7.24 mm.
Explanation:
Given that,
Wavelength = 632.8 nm
Width d= 0.350 mm
Distance between screen and slit D= 2.00 m
We need to calculate the distance
Using formula of distance

Put the value into the formula


We need to calculate the width of the central bright fringe
Using formula of width

Put the value into the formula


Hence, The width of the central bright fringe is 7.24 mm.
Answer:
J = 14.4 kg*m^2
Explanation:
Assuming that the wheel is not moving anywhere, and the kinetic energy is only due to rotation:
Ek = 1/2 * J * w^2
J = 2 * Ek / (w^2)
We need the angular speed in rad / s
566 rev/min * (1 min/ 60 s) * (2π rad / rev) = 58.22 rad/s
Then:
J = 2 * 24400 / (58.22^2) = 14.4 kg*m^2
Answer:
A magnets always have two poles (north and south), the unmagnetized rod can be identified using properties of the poles of a magnet.
Explanation:
The law of magnetism states that like poles repel, while unlike poles attract. The simple experiment here is to use two rods at a time, keeping one of the poles of the first rod constant, while changing the poles of the other rod.
When the two rods are magnets, attraction and repulsion would be observed between the rods. But for the case of unmagnetized rod and one of the magnetised rod, only attraction is observed between the poles.