Answer:
A
Step-by-step explanation:
Joint variation is given by:
![y=kxz](https://tex.z-dn.net/?f=y%3Dkxz)
Where k is some constant.
We are given that y = 360 when x = 4 and z = 10. Therefore:
![360=k(4)(10)](https://tex.z-dn.net/?f=360%3Dk%284%29%2810%29)
Solving for k:
![40k=360\Rightarrow k=9](https://tex.z-dn.net/?f=40k%3D360%5CRightarrow%20k%3D9)
Therefore, our equation is:
![y=9xz](https://tex.z-dn.net/?f=y%3D9xz)
Then when x = 5 and z = 12:
![y=9(5)(12)=540](https://tex.z-dn.net/?f=y%3D9%285%29%2812%29%3D540)
The answer is A.
Answer:
![200](https://tex.z-dn.net/?f=200)
Step-by-step explanation:
This book has 500 pages in total.
We should split up the place values.
1 - 9
One only appears once.
1
10 - 19
One appears 11 times.
1 + 11
20 - 99
One only appears 8 times.
1 + 11 + 8
Add:
1 + 11 + 8
=> 20
Since the same is for 200-299, and so on. Let us add twenty four times.
20 * 4
=> 80
Looking back to 100-199, there are 120 ones.
Add:
120 + 80
=> 200
Answer:
Step-by-step explanation:
![\frac{sin~x}{sec~x+1} =\frac{sin~x}{\frac{1}{cos~x}+1 } =\frac{sin~x~cos~x}{1+cos~x} \\=\frac{sin~x~cos~x}{1+cos~x} \times \frac{1-cos~x}{1-cos~x} \\=\frac{sin~x~cos~x(1-cos~x)}{1-cos^2 x} \\=\frac{sin~x~cos~x(1-cos~x)}{sin^2x} \\=\frac{cos~x(1-cos~x)}{sin~x} \\=cos ~x(csc~x-cot~x)\\or\\=cot~x(1-cos~x)](https://tex.z-dn.net/?f=%5Cfrac%7Bsin~x%7D%7Bsec~x%2B1%7D%20%3D%5Cfrac%7Bsin~x%7D%7B%5Cfrac%7B1%7D%7Bcos~x%7D%2B1%20%20%7D%20%3D%5Cfrac%7Bsin~x~cos~x%7D%7B1%2Bcos~x%7D%20%5C%5C%3D%5Cfrac%7Bsin~x~cos~x%7D%7B1%2Bcos~x%7D%20%5Ctimes%20%5Cfrac%7B1-cos~x%7D%7B1-cos~x%7D%20%5C%5C%3D%5Cfrac%7Bsin~x~cos~x%281-cos~x%29%7D%7B1-cos%5E2%20x%7D%20%5C%5C%3D%5Cfrac%7Bsin~x~cos~x%281-cos~x%29%7D%7Bsin%5E2x%7D%20%5C%5C%3D%5Cfrac%7Bcos~x%281-cos~x%29%7D%7Bsin~x%7D%20%5C%5C%3Dcos%20~x%28csc~x-cot~x%29%5C%5Cor%5C%5C%3Dcot~x%281-cos~x%29)