Answer:
√8 ==> 2 units, 2 units
√7 ==> √5 units, √2 units
√5 ==> 1 unit, 2 units
3 ==> >2 units, √5 units
Step-by-step explanation:
To determine which pair of legs that matches a hypotenuse length to create a right triangle, recall the Pythagorean theorem, which holds that, for a right angle triangle, the square of the hypotenuse (c²) = the sum of the square of each leg length (a² + b²)
Using c² = a² + b², let's find the hypotenuse length for each given pairs of leg.
=>√5 units, √2 units
c² = (√5)² + (√2)²
c² = 5 + 2 = 7
c = √7
The hypothenuse length that matches √5 units, √2 units is √7
=>√3 units, 4 units
c² = (√3)² + (4)²
c² = 3 + 16 = 19
c = √19
This given pair of legs doesn't match any given hypotenuse length
=>2 units, √5 units
c² = (2)² + (√5)²
c² = 4 + 5 = 9
c = √9 = 3
legs 2 units, and √5 units matche hypotenuse length of 3
=>2 units, 2 units
c² = 2² + 2² = 4 + 4
c² = 8
c = √8
Legs 2 units, and 2 units matche hypotenuse length of √8
=> 1 unit, 2 units
c² = 1² + 2² = 1 + 4
c² = 5
c = √5
Leg lengths, 1 unit and 2 units match the hypotenuse length, √5
To test if this is a right triangle, let's test these side lengths with the Pythagorean Theorem.
a^2 + b^2 = c^2
c is the hypotenuse, the longest side of a right triangle.
a and b are the legs of the right triangle.
a = 7
b = 15
c = 17
7^2 + 15^2 = 17^2 ?
49 + 225 = 289 ?
274 ≠ 289
Thus, this triangle is not a right triangle since it does not satisfy the Pythagorean Theorem.
Have an awesome day! :)
The answer is 98-40 square root 6
The class width for this Frequency Distribution Table is 5.
<h3>What is the class width?</h3>
The class width is the difference between the upper boundary and the lower boundary of the class.
The class width = upper boundary - lower boundary
5 - 0 = 5
To learn more about Frequency tables, please check: brainly.com/question/27344444
#SPJ1
Answer:
2
Step-by-step explanation:
hope this helps