Answer: Stock nomenclature of
is ammonium(I) nitrate
Explanation:
Stock nomenclature is used for chemical nomenclature where the oxidation states of some or all of the elements in a compound are indicated by Roman numerals in parentheses.
For example:
which has iron in oxidation state of +2 has stock nomenclature of iron(II) chloride.
which has iron in oxidation state of +3 has stock nomenclature of iron(III) chloride.
Thus the stock nomenclature of
is ammonium(I) nitrate as ammonium has oxidation state of +1.
Answer:
1. The pressure will be 32 atm, twice the initial pressure.
2. The pressure will be 1.83 atm, one third of the initial pressure.
Explanation:
Boyle's law is one of the gas laws that relates the volume and pressure of a certain quantity of gas kept at a constant temperature.
This law says that "The volume occupied by a given gaseous mass at constant temperature is inversely proportional to pressure." This means that if the pressure increases, the volume decreases, while if the pressure decreases, the volume increases.
Boyle's law is expressed mathematically as:
Pressure * Volume = constant
or P * V = k
Ahora es posible suponer que tienes un cierto volumen de gas V1 que se encuentra a una presión P1 al comienzo del experimento. Si varias el volumen de gas hasta un nuevo valor V2, entonces la presión cambiará a P2, y se cumplirá:
P1*V1=P2*V2
1. In this case:
- P1= 16 atm
- V1
- P2= ?
- V2= V1÷2=
because the volume is halved.
So:
16 atm*V1= P2* 
Solving:
=P2
16 atm*2= P2
32 atm= P2
<u><em>The pressure will be 32 atm, twice the initial pressure.</em></u>
2. Now
- P1= 5.5 atm
- V1
- P2= ?
- V2= V1*3 because the volume is tripled.
So:
5.5 atm*V1= P2* V1*3
Solving:
=P2
= P2
1.83 atm= P2
<u><em>The pressure will be 1.83 atm, one third of the initial pressure.</em></u>
you can learn who's blood it is, you can also see the blood patterns and how the crime maybe happened.
Answer:
The student should weigh out 61.2g of ethanolamine [6.12 * 10]
Explanation:
In this question, we are expected to calculate the mass of ethanolamine needed to make 60.0ml of it given that the density of the ethanolamine in question is 1.02g/cm^3
Mathematically, it has been shown that mass = density * volume
Hence, by multiplying the density by the volume, we get the mass.
Now, from the question we can see that we have the values for the density and the volume. We now need to get the mass.
Since cm^3 is same as ml, we need not perform any conversion.
Hence, the needed mass is:
60 * 1.02 = 61.2g