Explanation:
Since m is a unit in S, then, there exists b ∈ S such that m*b = 1, where 1 is the identity. Since S is a subring of R we have that m ∈ R, and therefore b is also the multiplicative inverse of m in R. The converse isnt true.
The set of real numbers is a Ring with the standard sum and multiplication. Every real number different from 0 has a multiplicative inverse. For example, the inverse of 2 is 1/2. However, 2 is not a unit on the subring of Integers Z.
Answer:
586 bananas
Step-by-step explanation:
Macy - 812 bananas
Jake - (812 x 0.83) = 673.96 bananas
Karl - (673.96 x 3) = 2021.88 bananas
Gary - (2021.88 x 0.29) = 586.3452 bananas. The answer gets rounded down to 586 bananas because he can't have part of a banana
Answer:
4x+2h
Step-by-step explanation:
The average rate of change of a continuous function,
f
(
x
)
, on a closed interval
[
a
,
b
]
is given by
f
(
b
)
−
f
(
a
)
b
−
a
So the average rate of change of the function
f
(
x
)
=
2
x
2
+
1
on
[
x
,
x
+
h
]
is:
A
r
o
c
=
f
(
x
+
h
)
−
f
(
x
)
(
x
+
h
)
−
(
x
)
=
f
(
x
+
h
)
−
f
(
x
)
h
...
.
.
[
1
]
=
2
(
x
+
h
)
2
+
1
−
(
2
x
2
+
1
)
h
=
2
(
x
2
+
2
x
h
+
h
2
)
+
1
−
2
x
2
−
1
h
=
2
x
2
+
4
x
h
+
2
h
2
−
2
x
2
h
=
4
x
h
+
2
h
2
h
=
4
x
+
2
h
Which is the required answer.
Additional Notes:
Note that this question is steered towards deriving the derivative
f
'
(
x
)
from first principles, as the definition of the derivative is:
f
'
(
x
)
=
lim
h
→
0
f
(
x
+
h
)
−
f
(
x
)
h
This is the function we had in [1], so as we take the limit as
h
→
0
we get the derivative
f
'
(
x
)
for any
x
, This:
f
'
(
x
)
=
lim
h
→
0
4
x
+
2
h
=
4
x
for 2a, use the theorems of geometry and such to look at the area of the square as 16 squares total, then use the lengths and Sim/cos rule for the triangular area, then subtract and you have you shaded area.