Answer:
slope= -3
y-intercept= 6
Step-by-step explanation:
1. Approach
To solve this problem, one needs the slope and the y-intercept. First, one will solve for the slope, using the given points, then input it into the equation of a line in slope-intercept form. The one can solve for the y-intercept.
2.Solve for the slope
The formula to find the slope of a line is;

Where (m) is the variable used to represent the slope.
Use the first two given points, and solve;
(1, 3), (2, 0)
Substitute in,

Simplify;

3. Put equation into slope-intercept form
The equation of a line in slope-intercept form is;

Where (m) is the slope, and (b) is the y-intercept.
Since one solved for the slope, substitute that in, then substitute in another point, and solve for the parameter (b).

Substitute in point (3, -3)

A. X Z Y
B. P N M
C. F E H G D
Answer:
a) A. The population must be normally distributed
b) P(X < 68.2) = 0.7967
c) P(X ≥ 65.6) = 0.3745
Step-by-step explanation:
a) The population is normally distributed having a mean (
) = 64 and a standard deviation (
) = 
b) P(X < 68.2)
First me need to calculate the z score (z). This is given by the equation:
but μ=64 and σ=19 and n=14,
and 
Therefore: 
From z table, P(X < 68.2) = P(z < 0.83) = 0.7967
P(X < 68.2) = 0.7967
c) P(X ≥ 65.6)
First me need to calculate the z score (z). This is given by the equation:
Therefore: 
From z table, P(X ≥ 65.6) = P(z ≥ 0.32) = 1 - P(z < 0.32) = 1 - 0.6255 = 0.3745
P(X ≥ 65.6) = 0.3745
P(X < 68.2) = 0.7967