Answer:
The balance after the payment is $1263.84.
Step-by-step explanation:
The formula for amount after compound interest is

Where, P is principal, r is rate of interest, n is number of time interest compounded in a period, number of periods.
According to the given information,
P=1455.69
r=0.128
n=365
t=45
Put these values in the above formula,


The amount after compound interest is $1478.84. Add late fee chages $35 in this amount and subtract the payment of $250. So, the balance amount after payment is

Therefore the balance after the payment is $1263.84.
I believe it is (3*4*4*4)/16=12
hopefully its right and it helped!
Step-by-step explanation:
3x + 2y = 8
2y= -3x+8
y= -3/2x+4
so the answer is m= -
m=− 2
3
Answer:
Step-by-step explanation:
(A) The difference between an ordinary differential equation and an initial value problem is that an initial value problem is a differential equation which has condition(s) for optimization, such as a given value of the function at some point in the domain.
(B) The difference between a particular solution and a general solution to an equation is that a particular solution is any specific figure that can satisfy the equation while a general solution is a statement that comprises all particular solutions of the equation.
(C) Example of a second order linear ODE:
M(t)Y"(t) + N(t)Y'(t) + O(t)Y(t) = K(t)
The equation will be homogeneous if K(t)=0 and heterogeneous if 
Example of a second order nonlinear ODE:

(D) Example of a nonlinear fourth order ODE:
![K^4(x) - \beta f [x, k(x)] = 0](https://tex.z-dn.net/?f=K%5E4%28x%29%20-%20%5Cbeta%20f%20%5Bx%2C%20k%28x%29%5D%20%3D%200)
Using the properties of arcs and inscribed angles, B is 110/2=55.