Answer:
Mass = 1.33 g
Explanation:
Given data:
Mass of argon required = ?
Volume of bulb = 0.745 L
Temperature and pressure = standard
Solution:
We will calculate the number of moles of argon first.
Formula:
PV = nRT
R = general gas constant = 0.0821 atm.L/mol.K
By putting values,
1 atm ×0.745 L = n × 0.0821 atm.L/mol.K× 273.15 K
0.745 atm. L = n × 22.43 atm.L/mol
n = 0.745 atm. L / 22.43 atm.L/mol
n = 0.0332 mol
Mass of argon:
Mass = number of moles × molar mass
Mass = 0.0332 mol × 39.95 g/mol
Mass = 1.33 g
The value of equilibrium constant is equal to the quotient of the products raised to its stoichiometric coefficient over the reaction's reactants raised to its respective stoichiometric coeff. The equation is Kc=[SO2][Cl2]/[SO2Cl2]= [1.3*10^-2][1.3*10^-2]/[2.2*10^-2-<span>1.3*10^-2]=0.0188. The final answer is Kc=0.0188.</span>
As in like, the action or the history?
Answer:
ΔH°rxn = - 433.1 KJ/mol
Explanation:
- CH4(g) + 4Cl2(g) → CCl4(g) + 4HCl(g)
⇒ ΔH°rxn = 4ΔH°HCl(g) + ΔH°CCl4(g) - 4ΔH°Cl2(g) - ΔH°CH4(g)
∴ ΔH°Cl2(g) = 0 KJ/mol.....pure element in its reference state
∴ ΔH°CCl4(g) = - 138.7 KJ/mol
∴ ΔH°HCl(g) = - 92.3 KJ/mol
∴ ΔH°CH4(g) = - 74.8 KJ/mol
⇒ ΔH°rxn = 4(- 92.3 KJ/mol) + (- 138.7 KJ/mol) - 4(0 KJ/mol) - (- 74.8 KJ/mol)
⇒ ΔH°rxn = - 369.2 KJ/mol - 138.7 KJ/mol - 0 KJ/mol + 74.8 KJ/mol
⇒ ΔH°rxn = - 433.1 KJ/mol
I think it is sand and gold.