Answer:
One atom will give electrons to another atom to fill its shell, this is an ionic bond. The atom giving away electrons becomes positive and the one recieving electrons becomes negative.
Hope this helps
Explanation:
I need more information, there are meant to be coefficients in front of one of those ..
but you’d put .2 over the coefficients, and if there is not one, you put an X. then you will cross multiply, and divide if you have 2x or something greater than X.
Answer:
Ether is used as a solvent because it is aprotic and can solvate the magnesium ion.
Explanation:
Solubility in Water
Because ethers are polar, they are more soluble in water than alkanes of a similar molecular weight. The slight solubility of ethers in water results from hydrogen bonds between the hydrogen atoms of water molecules and the lone pair electrons of the oxygen atom of ether molecules.
Ethers as Solvents
Ethers such as diethyl ether dissolve a wide range of polar and nonpolar organic compounds. Nonpolar compounds are generally more soluble in diethyl ether than alcohols because ethers do not have a hydrogen bonding network that must be broken up to dissolve the solute. Because diethyl ether has a moderate dipole moment, polar substances dissolve readily in it.
Ethers are aprotic. Thus, basic substances, such as Grignard reagents, can be prepared in diethyl ether or tetrahydrofuran. These ethers solvate the magnesium ion, which is coordinated to the lone pair electrons of diethyl ether or THF. Figure attached, shows the solvation of a Grignard reagent with dietheyl ether.
The lone pair electrons of an ether also stabilize electron deficient species such as BF3 and borane (BH3). For example, the borane-THF complex is used in the hydroboration of alkenes (Section 1
The chemical formula : X₃Y₂
<h3>Further explanation </h3>
The noble gas element is a stable class of elements. The noble gas element is monatomic. Stability of noble gases is caused by an electron configuration that has a stable configuration of 8 (has 8 valence electrons) except He with a duplet configuration (has 2 valence electrons)
Other elements that do not yet have electron configurations such as noble gases will try to achieve their stability by forming bonds between elements.
This is generally called the octet rule
X has 2 valence electrons.to achieve stability, element X will release 2 electrons to form X²⁺
Y has 5 valence electrons, to achieve stability, the element Y will attract/ add electrons to form Y³⁻
The two compounds will form a compound with the charges crossed : X₃Y₂
Answer:
A. c. Keq=[H2]^2[S2]/[H2S]^2
B. b. Keq=[COCl2]/[CO][Cl2]
Explanation:
Hello,
In this case, considering the law of mass action which states that the equilibrium expression is written in terms of the concentration of products divided by the concentration of reactants considering the stoichiometric coefficients as powers we obtain:
A. For the reaction:

The equilibrium expression is:
![Keq=\frac{[H_2]^2[S_2]}{[H_2S]^2}](https://tex.z-dn.net/?f=Keq%3D%5Cfrac%7B%5BH_2%5D%5E2%5BS_2%5D%7D%7B%5BH_2S%5D%5E2%7D)
Therefore, answer is c. Keq=[H2]^2[S2]/[H2S]^2.
B. For the reaction:

The equilibrium expression is:
![Keq=\frac{[COCl_2]}{[CO][Cl_2]}](https://tex.z-dn.net/?f=Keq%3D%5Cfrac%7B%5BCOCl_2%5D%7D%7B%5BCO%5D%5BCl_2%5D%7D)
Therefore, answer is b. Keq=[COCl2]/[CO][Cl2].
Regards.