Took a a test and got it correct .... ——-The solubility curve for a gas would start higher and curve downwards as temperature increased
Answer:
Temperature of the hot reservoir is 1540K
Explanation:
![E= 1- \frac{T_{c}}[tex]{T_h}=308+{T_c}\\Efficiency of a carnot engine is given by the aboveTc=temperature of the cold reservoirTh= temperature of the hot reservoirK=273+ 35 (convert 35°C to kelvin)K=308k{T_h}={T_c}+308-----------------------(equation 1)20%=1-{T_c}/{T_h}](https://tex.z-dn.net/?f=E%3D%201-%20%5Cfrac%7BT_%7Bc%7D%7D%5Btex%5D%7BT_h%7D%3D308%2B%7BT_c%7D%5C%5C%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3EEfficiency%20of%20a%20carnot%20engine%20is%20given%20by%20the%20above%3C%2Fp%3E%3Cp%3ETc%3Dtemperature%20of%20the%20cold%20reservoir%3C%2Fp%3E%3Cp%3ETh%3D%20temperature%20of%20the%20hot%20reservoir%3C%2Fp%3E%3Cp%3EK%3D273%2B%2035%20%20%28convert%20%2035%C2%B0C%20to%20kelvin%29%3C%2Fp%3E%3Cp%3EK%3D308k%3C%2Fp%3E%3Cp%3E%3Cstrong%3E%7BT_h%7D%3D%7BT_c%7D%2B308-----------------------%28equation%20%201%29%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%3Cstrong%3E20%25%3D1-%7BT_c%7D%2F%7BT_h%7D)
0.2=({T_c}+308-{T_c})/{T_c}+308
.2({T_c}+61.6=308
0.2{T_c}=246.4
{T_c}=1232
recall from equation 1
{T_h}=308+1232
{T_h}=1540K
Answer:
The Force exerted by the two objects will be same and 4,401,189.49 × 10−11 N
Explanation:
Let m1 be the mass of the first object and m2 be the mass of the second object and the distance between them be d. Then
m1= 181kg
m2= 712 kg
d= 0.442 m
G is the gravitational Constant
According to Newtons Law Gravitational Force is given by
F=G m1 m2 /d²
F= 6.672 × 10−11 ×181×712/(0.442)²
F= 859,576.24 × 10−11/0.195364
F= 4,401,189.49 × 10−11 N
The Force exerted by the two masses on the third mass will be same and 4,401,189.49 × 10−11 N
Answer:
v_f = 10.85 m/s
Explanation:
We will apply the law of conservation of momentum here:

where,
m₁ = mass of roller skater = 47 kg
m₂ = mass of bag = 6 kg
v_1i = initial speed of roller skater = 12 m/s
v_2i = initial speed of the bag = 0 m/s
v_1f = final speed of the roller skater = ?
v_2f = final speed of the bag = ?
Both the bag and the skater will have same speed at the end because kater is carrying the bag:
v_1f = v_2f = v_f
Therefore, the equation will become:

<u>v_f = 10.85 m/s</u>