Answer:
The electrolysis of zinc chloride shows how an ionic salt will conduct electricity when molten, but not when solid.
Explanation:
hope this helps!!!! GOOD LUCK!!!!
Answer:
There is some sort of "rollers" on the trail part that is used to make the roller coaster move when it is going up. Then because of that, the speed gets quicker when it drops down, so then it could move for a longer time until it reaches the next arch.
Explanation:
hope this helps :)
Answer:
a. 11.5kv/m
b.102nC/m^2
c.3.363pF
d. 77.3pC
Explanation:
Data given

to calculate the electric field, we use the equation below
V=Ed
where v=voltage, d= distance and E=electric field.
Hence we have

b.the expression for the charge density is expressed as
σ=ξE
where ξ is the permitivity of air with a value of 8.85*10^-12C^2/N.m^2
If we insert the values we have

c.
from the expression for the capacitance

if we substitute values we arrive at

d. To calculate the charge on each plate, we use the formula below

Here we go.
My abbreviations; KE = Kinetic Energy; GPE = Gravitational Potential Energy.
So first off, we know the fish has KE right when the bird releases it. Why? Because it has horizontal velocity after released! So let’s calculate it:
KE = 1/2(m)(V)^2
KE = 1/2(2)(18)^2
KE = 324 J
Nice!
We also know that the fish has GPE at its maximum height before release:
GPE = mgh
GPE = (2)(9.81)(5.40)
GPE = 105.95 J
Now, based on the *queue dramatic voice* LAW OF CONSERVATION OF ENERGY, we know all of the initial energy of the fish will be equal to the amount of final energy. And since the only form of energy when it hits the water is KE, we can write:
KEi + GPEi = KEf
(Remember - we found the initial energies before!)
(324) + (105.95) = KEf
KEf = 429.95J
And that’s you’re final answer! Notice how this value is MORE than the initial KE from before (324 J) - this is because all of the initial GPE from before was transformed into more KE as the fish fell (h decreased) and sped up (V increased).
If this helped please like it and comment!