Answer:
A path that allows most of the current in an electric circuit to flow around or away from the principal elements or devices in the circuit.
Answer:
Explanation:
There are a couple of ways you could do this.
The easiest is to use E*R1/(R1 + R2)
- E = 10 volts
- R1 = 590 ohms
- R2 = 840 ohms
So the result would be
E_590 = 10 * 590/(590 + 840)
E_590 = 10 * 590/ (1430)
E_590 = 4.13 volts rounded.
You could do this a slightly longer way.
R = 1430 (total ohms in series.
E = 10 volts
I = ???
I = E/R
I = 10 / 1430
I = 0.00699
Now use this current to figure out the voltage drop.
E = I * R
I = 0.00699 amps
R = 590 ohms
E = 0.00699 * 590
E = 4.13 volts
Pick the way of doing it you like best.
The <span>researchers </span>might not get accurate results because of the following points:
1) The students may lie about the drug use.
2) The students may write correct information and might later feel guilty of writing the truth.
3) High school Students dont know much about drug types and its usage.
4) This task must be conducted in person, with students.
Answer:
L = 8694 Kg.m²/s
Explanation:
r = 270 ĵ m
v = 14 î m/s
m = 2.3 kg
θ = 90º
L = ?
We can apply the equation
L = m*v*r*Sin θ
L = (2.3 kg)*(14 m/s)*(270 m)*Sin 90º = 8694 Kg.m²/s