Answer:
Explanation:
Maximum force of friction possible = μmg
= .65 x 3.8 x 9.8
= 24.2 N
u = 72 x 1000 / 60 x 60
= 20 m /s
v² = u² - 2as
a = 20 x 20 / (2 x 30)
= 6.67 m / s²
force acting on it
= 3.8 x 6.67
= 25.346 N
Friction force possible is less .
So friction will not be able to prevent its slippage
It will slip off .
The 'Rite of Spring' was composed by Igor Stravinsky.
We know that the source of light in the universe is the Sun. Hence, the light we see as moonlight travels from the Sun's surface, to the moon, then to Earth. So, before being able to solve this problem, we have to know the distance between the Sun and the moon, and the distance between the moon and Earth. In literature, these values are 3.8×10⁵ km (Sun to moon) and 384,400 km (moon to Earth). Knowing that the speed of light is 300,000 km per second, then the total time would be
Time = distance/speed
Time = (3.8×10⁵ km + 384,400 km)/300,000 km/s
Time = 2.548 seconds
Thus, it only takes 2.548 for the light from the Sun to reach to the Earth as perceived to be what we call moonlight.
The energy in electron volts of the photons that has the following frequencies is as follows:
- 620 THz = 2.564eV
- 3.10GHz = 1.28 × 10-⁵eV
- 46.0 MHz = 1.902 × 10-⁷eV
<h3>How to calculate energy?</h3>
The energy of a photon can be calculated using the following formula:
E = hf
Where;
- E = energy
- h = Planck's constant (6.626 × 10-³⁴ J/s)
- f = frequency
First, we convert the frequencies to hertz as follows;
- 620THz = 6.2 × 10¹⁴Hz
- 3.10GHz = 3.1 × 10⁹Hz
- 46.0MHz = 4.6 × 10⁷Hz
- E = 6.626 × 10-³⁴ × 6.2 × 10¹⁴ = 2.564eV
- E = 6.626 × 10-³⁴ × 3.1 × 10⁹ = 1.28 × 10-⁵eV
- E = 6.626 × 10-³⁴ × 4.6 × 10⁷ = 1.902 × 10-⁷eV
Learn more about energy of a photon at: brainly.com/question/2393994
#SPJ1