Answer:
Same magnitude of the 10 nc charge cause the electric field is external.
Explanation:
To do a better explanation, let's go and suppose we have an electric field of, 1300 N/C with a 10 nC charge.
As the system we are talking about is really big, and the charge is small, we can assume always if the charge is sitting right in the same point where the electric field is, then, the electric field would not suffer any kind of alteration in it's value. Therefore, no matter what value of the charge is sitting here, the electric field is independent of the charge, so it would not feel any alteration. However, the force that the charge is feeling would be stronger than in the first case.
F = qE
If charge is doubled, then the force would be bigger in the second case than in the first case, but electric field remain the same value.
Answer:
7.74m/s
Explanation:
Mass = 35.9g = 0.0359kg
A = 39.5cm = 0.395m
K = 18.4N/m
At equilibrium position, there's total conservation of energy.
Total energy = kinetic energy + potential energy
Total Energy = K.E + P.E
½KA² = ½mv² + ½kx²
½KA² = ½(mv² + kx²)
KA² = mv² + kx²
Collect like terms
KA² - Kx² = mv²
K(A² - x²) = mv²
V² = k/m (A² - x²)
V = √(K/m (A² - x²) )
note x = ½A
V = √(k/m (A² - (½A)²)
V = √(k/m (A² - A²/4))
Resolve the fraction between A.
V = √(¾. K/m. A² )
V = √(¾ * (18.4/0.0359)*(0.395)²)
V = √(0.75 * 512.53 * 0.156)
V = √(59.966)
V = 7.74m/s
The answer is c.
hope this helps! :)
Option 4 ( R2 and R3 ) is the correct answer.
Explanation:
- In the below given diagram, we can see a circuit diagram that has four resistors such as R1, R2, R3, and R4.
- The opening of the circuit is noted as "a" and the ending is noted as "b".
- By observing the above diagram, we can clearly see that R2 and R3 are the pair of resistors that are connected in a parallel manner.
- Where all the other resistors such as R1 and R4 are neither connected in parallel nor in series.
Hence we can conclude that Resistor R2 and R3 are the ones that are connected in parallel.
Answer:
1. enhance learning and memory ability in nonhuman organisms.
Explanation:
Genetic engineering can be defined as the process by which scientists modify the genome of an organism using new molecular tools. The resulting organism after the modification is known as Genetically Modified Organisms (GMO).
To create this genetically modified organisms requires recombinant DNA.
Advances in genetic engineering show that it is possible to enhance learning and memory ability in nonhuman organisms through biotechnology.