Answer:
Three double bonds and no lone pairs of electrons- trigonal planar
Two single bonds and two lone pairs of electrons-bent
Five single bonds and no lone pairs of electrons- trigonal bipyramidal
Three single bonds and one lone pair of electrons- trigonal pyramidal
Two double bonds and no lone pairs of electrons - linear
Four single bonds and no lone pairs of electrons- tetrahedral
Six single bonds and no lone pairs of electrons- octahedral
Explanation:
The valence shell electron pair repulsion theory gives a description of the shape of a molecule based on the number of regions of electron density present on the valence shell of the central atom of the molecule.
The molecules are distorted away from the shape predicted on the basis of the VSEPR by the presence of lone pairs on the valence shell of the central atom in the molecule. In the absence of lone pairs, the shape of a molecule is exactly the shape predicted on the basis of the VSEPR theory.
<span>Exothermic reaction evolves energy due to which products get hot...</span>
Answer: The activation energy Ea for this reaction is 22689.8 J/mol
Explanation:
According to Arrhenius equation with change in temperature, the formula is as follows.
![ln \frac{k_{2}}{k_{1}} = \frac{-E_{a}}{R}[\frac{1}{T_{2}} - \frac{1}{T_{1}}]](https://tex.z-dn.net/?f=ln%20%5Cfrac%7Bk_%7B2%7D%7D%7Bk_%7B1%7D%7D%20%3D%20%5Cfrac%7B-E_%7Ba%7D%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_%7B2%7D%7D%20-%20%5Cfrac%7B1%7D%7BT_%7B1%7D%7D%5D)
= rate constant at temperature
= 
= rate constant at temperature
=
= activation energy = ?
R= gas constant = 8.314 J/kmol
= temperature = 
= temperature = 
Putting in the values ::
![ln \frac{4.8\times 10^8}{2.3\times 10^8} = \frac{-E_{a}}{8.314}[\frac{1}{649} - \frac{1}{553}]](https://tex.z-dn.net/?f=ln%20%5Cfrac%7B4.8%5Ctimes%2010%5E8%7D%7B2.3%5Ctimes%2010%5E8%7D%20%3D%20%5Cfrac%7B-E_%7Ba%7D%7D%7B8.314%7D%5B%5Cfrac%7B1%7D%7B649%7D%20-%20%5Cfrac%7B1%7D%7B553%7D%5D)

The activation energy Ea for this reaction is 22689.8 J/mol
Answer:
D
Explanation:
They are renewable energy sources