Technically speaking, yes you can. Using a microscope though.
Answer:
they are indeed very strong
Let x represent the total distance around the track
Jason's distance: (5/7)x
Sara ran (4/5) of Jason's distance,
so she ran (4/5)*(5/7)x = (4/7)x
Sara ran 4/7 of the total distance
Answer:
Option 3. The catalyst does not affect the enthalpy change (
) of a reaction.
Explanation:
As its name suggests, the enthalpy change of a reaction (
) is the difference between the enthalpy of the products and the reactants.
On the other hand, a catalyst speeds up a reaction because it provides an alternative reaction pathway from the reactants to the products.
In effect, a catalyst reduces the activation energy of the reaction in both directions. The reactants and products of the reaction won't change. As a result, the difference in their enthalpies won't change, either. That's the same as saying that the enthalpy change
of the reaction would stay the same.
Refer to an energy profile diagram. Enthalpy change of the reaction
measures the difference between the two horizontal sections. Indeed, the catalyst lowered the height of the peak. However, that did not change the height of each horizontal section or the difference between them. Hence, the enthalpy change of the reaction stayed the same.
According to <span>Gay-Lussac's Law the temperature and Pressure are directly proportional to each other if the amount and volume of given gas are kept constant.
Mathematically for initial and final states it is expressed as,
P</span>₁ / T₁ = P₂ / T₂ ----- (1)
Data Given;
P₁ = 1.5 atm
T₁ = 35 °C + 273 = 308 K
P₂ = ?
T₂ = 0 °C + 273 = 273 K
Solving Eq. 1 for P₂,
P₂ = P₁ T₂ / T₁
Putting values,
P₂ = (1.5 atm × 273 K) ÷ 308 K
P₂ = 1.32 atm
Result:
As the temperature is decreased so the pressure also decreases from 1.5 atm to 1.32 atm. Therefore the bag will contract.