1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Free_Kalibri [48]
3 years ago
7

Explain how to determine theoretical probability of an event.

Mathematics
2 answers:
Vinvika [58]3 years ago
8 0

Answer:

Find the ratio

Step-by-step explanation:

ira [324]3 years ago
7 0
Theoretical ProbabilityThe theoretical probability of an event is the likelihood that the event will occur. It is calculated by finding the ratio of the number of favorable outcomes to the number of total outcomes.
You might be interested in
every 3 days Seth goes to the grocery store his best friend Brain goes every five day on what day will they go will they both go
Alex777 [14]
I think you answer would be 12
8 0
3 years ago
Let and be differentiable vector fields and let a and b be arbitrary real constants. Verify the following identities.
elena-14-01-66 [18.8K]

The given identities are verified by using operations of the del operator such as divergence and curl of the given vectors.

<h3>What are the divergence and curl of a vector field?</h3>

The del operator is used for finding the divergence and the curl of a vector field.

The del operator is given by

\nabla=\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}

Consider a vector field F=x\^i+y\^j+z\^k

Then the divergence of the vector F is,

div F = \nabla.F = (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(x\^i+y\^j+z\^k)

and the curl of the vector F is,

curl F = \nabla\times F = \^i(\frac{\partial Fz}{\partial y}- \frac{\partial Fy}{\partial z})+\^j(\frac{\partial Fx}{\partial z}-\frac{\partial Fz}{\partial x})+\^k(\frac{\partial Fy}{\partial x}-\frac{\partial Fx}{\partial y})

<h3>Calculation:</h3>

The given vector fields are:

F1 = M\^i + N\^j + P\^k and F2 = Q\^i + R\^j + S\^k

1) Verifying the identity: \nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2

Consider L.H.S

⇒ \nabla.(aF1+bF2)

⇒ \nabla.(a(M\^i + N\^j + P\^k) + b(Q\^i + R\^j + S\^k))

⇒ \nabla.((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

Applying the dot product between these two vectors,

⇒ \frac{\partial (aM+bQ)}{\partial x}+ \frac{\partial (aN+bR)}{\partial y}+\frac{\partial (aP+bS)}{\partial z} ...(1)

Consider R.H.S

⇒ a\nabla.F1+b\nabla.F2

So,

\nabla.F1=(\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(M\^i + N\^j + P\^k)

⇒ \nabla.F1=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z}

\nabla.F2=(\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(Q\^i + R\^j + S\^k)

⇒ \nabla.F1=\frac{\partial Q}{\partial x}+\frac{\partial R}{\partial y}+\frac{\partial S}{\partial z}

Then,

a\nabla.F1+b\nabla.F2=a(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z})+b(\frac{\partial Q}{\partial x}+\frac{\partial R}{\partial y}+\frac{\partial S}{\partial z})

⇒ \frac{\partial (aM+bQ)}{\partial x}+ \frac{\partial (aN+bR)}{\partial y}+\frac{\partial (aP+bS)}{\partial z} ...(2)

From (1) and (2),

\nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2

2) Verifying the identity: \nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

Consider L.H.S

⇒ \nabla\times(aF1+bF2)

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z})\times(a(M\^i+N\^j+P\^k)+b(Q\^i+R\^j+S\^k))

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z})\times ((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

Applying the cross product,

\^i(\^k\frac{\partial (aP+bS)}{\partial y}- \^j\frac{\partial (aN+bR)}{\partial z})+\^j(\^i\frac{\partial (aM+bQ)}{\partial z}-\^k\frac{\partial (aP+bS)}{\partial x})+\^k(\^j\frac{\partial (aN+bR)}{\partial x}-\^i\frac{\partial (aM+bQ)}{\partial y}) ...(3)

Consider R.H.S,

⇒ a\nabla\times F1+b\nabla\times F2

So,

a\nabla\times F1=a(\nabla\times (M\^i+N\^j+P\^k))

⇒ \^i(\frac{\partial aP\^k}{\partial y}- \frac{\partial aN\^j}{\partial z})+\^j(\frac{\partial aM\^i}{\partial z}-\frac{\partial aP\^k}{\partial x})+\^k(\frac{\partial aN\^j}{\partial x}-\frac{\partial aM\^i}{\partial y})

a\nabla\times F2=b(\nabla\times (Q\^i+R\^j+S\^k))

⇒ \^i(\frac{\partial bS\^k}{\partial y}- \frac{\partial bR\^j}{\partial z})+\^j(\frac{\partial bQ\^i}{\partial z}-\frac{\partial bS\^k}{\partial x})+\^k(\frac{\partial bR\^j}{\partial x}-\frac{\partial bQ\^i}{\partial y})

Then,

a\nabla\times F1+b\nabla\times F2 =

\^i(\^k\frac{\partial (aP+bS)}{\partial y}- \^j\frac{\partial (aN+bR)}{\partial z})+\^j(\^i\frac{\partial (aM+bQ)}{\partial z}-\^k\frac{\partial (aP+bS)}{\partial x})+\^k(\^j\frac{\partial (aN+bR)}{\partial x}-\^i\frac{\partial (aM+bQ)}{\partial y})

...(4)

Thus, from (3) and (4),

\nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

Learn more about divergence and curl of a vector field here:

brainly.com/question/4608972

#SPJ4

Disclaimer: The given question on the portal is incomplete.

Question: Let F1 = M\^i + N\^j + P\^k and F2 = Q\^i + R\^j + S\^k be differential vector fields and let a and b arbitrary real constants. Verify the following identities.

1)\nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2\\2)\nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

8 0
2 years ago
There are 23 perfect tests taken.
Grace [21]

Answer:

92%

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Principle = 30,000<br>Time = 4 years<br>Rate = 30<br>Then find the simple interest ?​
Nutka1998 [239]

Answer:

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline\color{brown}{Given:}}}}}}\end{gathered}

  • {\dashrightarrow \sf{Principle = Rs.30000}}
  • {\dashrightarrow \sf {Time = 4 \: years}}
  • \dashrightarrow \sf{Rate = 30\%}
  • \begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline\color{brown}{To Find:}}}}}}\end{gathered}

  • \dashrightarrow{\sf{Simple \: Interest }}

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline\color{brown}{Using Formula:}}}}}}\end{gathered}

\dag{\underline{\boxed{\sf{ S.I = \dfrac{P \times R \times T}{100}}}}}

Where

  • \dashrightarrow{\sf{S.I = Simple \:  Interest }}
  • {\dashrightarrow{\sf{P = Principle }}}
  • {\dashrightarrow{\sf{ R = Rate }}}
  • {\dashrightarrow{\sf{T = Time}}}

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline\color{brown}{Solution:}}}}}}\end{gathered}

{\quad {: \implies{\sf{ S.I =  \bf{\dfrac{P \times R \times T}{100}}}}}}

Substituting the values

{\quad {: \implies{\sf{ S.I =  \bf{\dfrac{30000 \times 30\times 4}{100}}}}}}

{\quad {: \implies{\sf{ S.I =  \bf{\dfrac{30000 \times 120}{100}}}}}}

{\quad {: \implies{\sf{ S.I =  \bf{\dfrac{3600000}{100}}}}}}

{\quad {: \implies{\sf{ S.I =  \bf{\cancel{\dfrac{3600000}{100}}}}}}}

{\quad {: \implies{\sf{ S.I =  \bf{Rs.36000}}}}}

{\dag{\underline{\boxed{\sf{ S.I ={Rs.36000}}}}}}

  • Henceforth,The Simple Interest is Rs.36000..

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline\color{brown}{Learn More:}}}}}}\end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \dag \: \underline{\bf{More \: Useful \: Formula}}\\ {\boxed{\begin{array}{cc}\dashrightarrow {\sf{Amount = Principle + Interest}} \\ \\ \dashrightarrow \sf{ P=Amount - Interest }\\ \\ \dashrightarrow \sf{ S.I = \dfrac{P \times R \times T}{100}} \\ \\ \dashrightarrow \sf{P = \dfrac{Interest \times 100 }{Time \times Rate}} \\ \\ \dashrightarrow \sf{P = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}} \\ \end{array}}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

8 0
3 years ago
Read 2 more answers
Translate the phrase into an algebraic expression.<br> The quotient of w and 4
Lady_Fox [76]
W/4 divide the two to find the quotient
4 0
3 years ago
Other questions:
  • Expand and simplify (1-5x)(1+5x)
    14·2 answers
  • frank has two same size rectangles divided into the same number of equal parts. one rectangle has 3/4 of the parts shaded, and t
    11·2 answers
  • What is the value of m?<br> 2/3m + 3 - 5/6m = -15
    8·2 answers
  • What is the approximate value of x in the triangle below
    9·1 answer
  • Which polynomial identity will prove that 117 = 125 − 8?
    12·2 answers
  • Lucas opened a savings account 20 years ago with a deposit of $3,815.24. The account has an interest rate of 3.3% compounded
    11·1 answer
  • Can someone please help me on this one I’ve been stuck on it for like a week now:/
    8·1 answer
  • 6. a) The mid point of a line segment is (1,-1) whose one end is (-1, -3). Find the other end. ​
    12·1 answer
  • Pls help ill give brainliest i put pictute down
    10·2 answers
  • Help me please!!! It’s due at 11:59
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!