Answer:
s = 1
Step-by-step explanation:
The sum of the interior angles of a polygon is
sum = 180° (n - 2) ← n is the number of sides
Here n = 5 , then
sum = 180° × 3 = 540°
sum the interior angles and equate to 540
39s + 129 + 79 + 145 + 148 = 540 , that is
39s + 501 = 540 ( subtract 501 from both sides )
39s = 39 ( divide both sides by 39 )
s = 1
Since AB is a straight line, and straight lines are 180 degrees, you can add the two 62 degree angles.
62+62=124
180-124=56
angle x is 56 degrees
In this instance the distance will be the hypotenuse of a right angle triangle.
x = 300/sin30 = 600
They are 600 ft away from each other
Answer:
<em>z </em>= 9
Step-by-step explanation:
ln 63 = ln z + ln 7
We have the formula:
ln A + ln B = ln AB
So, ln 63 = ln 7<em>z</em>
7<em>z </em>= 63
Divide both sides by 7.

<em>z</em> = 9
<h3>
<u>Correct Question :- </u></h3>


(a) 0
(b) 8000
(c) 8080
(d) 16000

Given that

We know


And


Also, given that


and

Now, Consider





![\sf \: = 20\bigg[ {a}^{2} + {b}^{2} + {c}^{2} + {d}^{2}\bigg]](https://tex.z-dn.net/?f=%20%5Csf%20%5C%3A%20%20%3D%2020%5Cbigg%5B%20%7Ba%7D%5E%7B2%7D%20%2B%20%20%7Bb%7D%5E%7B2%7D%20%2B%20%7Bc%7D%5E%7B2%7D%20%2B%20%20%7Bd%7D%5E%7B2%7D%5Cbigg%5D)
We know,

So, using this, we get
![\sf \: = 20\bigg[ {(a + b)}^{2} - 2ab + {(c + d)}^{2} - 2cd\bigg]](https://tex.z-dn.net/?f=%20%5Csf%20%5C%3A%20%20%3D%2020%5Cbigg%5B%20%7B%28a%20%2B%20b%29%7D%5E%7B2%7D%20-%202ab%20%2B%20%20%7B%28c%20%2B%20d%29%7D%5E%7B2%7D%20-%202cd%5Cbigg%5D)
![\sf \: = 20\bigg[ {( - 20)}^{2} + 2(2020) + {(20)}^{2} - 2(2020)\bigg]](https://tex.z-dn.net/?f=%20%5Csf%20%5C%3A%20%20%3D%2020%5Cbigg%5B%20%7B%28%20-%2020%29%7D%5E%7B2%7D%20%2B%20%202%282020%29%20%2B%20%20%7B%2820%29%7D%5E%7B2%7D%20-%202%282020%29%5Cbigg%5D)
![\sf \: = 20\bigg[ 400 + 400\bigg]](https://tex.z-dn.net/?f=%20%5Csf%20%5C%3A%20%20%3D%2020%5Cbigg%5B%20400%20%2B%20400%5Cbigg%5D)
![\sf \: = 20\bigg[ 800\bigg]](https://tex.z-dn.net/?f=%20%5Csf%20%5C%3A%20%20%3D%2020%5Cbigg%5B%20800%5Cbigg%5D)

Hence,

<em>So, option (d) is correct.</em>