1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MariettaO [177]
3 years ago
15

Find the vertex of the following equation y= (x+9)^2+8​

Mathematics
1 answer:
Olegator [25]3 years ago
8 0
(-9,8) is the answer (h,k) is the equation
You might be interested in
A store owner paid 15 dollars for a book. She marked up the price of the book by 40 percent to determine its selling price.
SpyIntel [72]
Part a: 21 dollars because you multiply .40 with 5 and get 6. you add the 6 to the 15 and get 21.
part b: 30.21 because you multiply 38 by .25 and get the answer for that and then subtract that number from 38. then you multiply 0.06 by 38 and when u get that number, add that to the discounted price.
6 0
3 years ago
The mean of the data set is 40 and one standard deviation is 5. About what percent of the numbers fall between 35 and 50?
Nataly [62]

Answer:

The correct option is D. 81.8%

Step-by-step explanation:

Mean of the data set is given to be 40

⇒ μ = 40

Standard deviation of the data set is given to be 5

⇒ σ = 5

Now we are supposed to find out what percent of the numbers fall between 35 and 50

\implies z =\frac{x-\mu}{\sigma}

Now for P(35 < x < 50) :

Substitute x = 35 ⇒ z = -1

Substitute x = 50 ⇒ z = 2

So, P(-1 < z < 2) = P(z < 2) - P(z < -1)

⇒ P(-1 < z < 2) = 0.9772 - 0.1587

⇒ P(-1 < z < 2) = 0.8185

⇒ P(-1 < z < 2) = 81.8%

Therefore, 81.8% percent of the numbers fall between 35 and 50

Hence, The correct option is D. 81.8%

8 0
3 years ago
What is the 3000th number in pi?
umka21 [38]

Top 3000 Digits Of Pi

 

3. 141592653589793238462643383279502884197169399375105  

82097494459230781640628620899862803482534211706798  

21480865132823066470938446095505822317253594081284  

81117450284102701938521105559644622948954930381964  

42881097566593344612847564823378678316527120190914  

56485669234603486104543266482133936072602491412737  

24587006606315588174881520920962829254091715364367  

89259036001133053054882046652138414695194151160943  

30572703657595919530921861173819326117931051185480  

74462379962749567351885752724891227938183011949129  

83367336244065664308602139494639522473719070217986  

09437027705392171762931767523846748184676694051320  

00568127145263560827785771342757789609173637178721  

46844090122495343014654958537105079227968925892354  

20199561121290219608640344181598136297747713099605  

18707211349999998372978049951059731732816096318595  

02445945534690830264252230825334468503526193118817  

10100031378387528865875332083814206171776691473035  

98253490428755468731159562863882353787593751957781  

85778053217122680661300192787661119590921642019893  

80952572010654858632788659361533818279682303019520  

35301852968995773622599413891249721775283479131515  

57485724245415069595082953311686172785588907509838  

17546374649393192550604009277016711390098488240128  

58361603563707660104710181942955596198946767837449  

44825537977472684710404753464620804668425906949129  

33136770289891521047521620569660240580381501935112  

53382430035587640247496473263914199272604269922796  

78235478163600934172164121992458631503028618297455  

57067498385054945885869269956909272107975093029553  

21165344987202755960236480665499119881834797753566  

36980742654252786255181841757467289097777279380008  

16470600161452491921732172147723501414419735685481  

61361157352552133475741849468438523323907394143334  

54776241686251898356948556209921922218427255025425  

68876717904946016534668049886272327917860857843838  

27967976681454100953883786360950680064225125205117  

39298489608412848862694560424196528502221066118630  

67442786220391949450471237137869609563643719172874  

67764657573962413890865832645995813390478027590099  

46576407895126946839835259570982582262052248940772  

67194782684826014769909026401363944374553050682034  

96252451749399651431429809190659250937221696461515  

70985838741059788595977297549893016175392846813826  

86838689427741559918559252459539594310499725246808  

45987273644695848653836736222626099124608051243884  

39045124413654976278079771569143599770012961608944  

16948685558484063534220722258284886481584560285060  

16842739452267467678895252138522549954666727823986  

45659611635488623057745649803559363456817432411251  

50760694794510965960940252288797108931456691368672  

28748940560101503308617928680920874760917824938589  

00971490967598526136554978189312978482168299894872  

26588048575640142704775551323796414515237462343645  

42858444795265867821051141354735739523113427166102  

13596953623144295248493718711014576540359027993440  

37420073105785390621983874478084784896833214457138  

68751943506430218453191048481005370614680674919278  

19119793995206141966342875444064374512371819217999  

8391015919561814675142691239748940907186494231961

8 0
3 years ago
Read 2 more answers
N is a positive integer
Murrr4er [49]

Part (1)

n is some positive integer. Let's say for now that n is even. So n = 2k, for some integer k

This means n-1 = 2k-1 is odd since subtracting 1 from an even number leads to an odd number.

Now multiply n with n-1 to get

n(n-1) = 2k(2k-1) = 2m

where m = k(2k-1) is an integer

The result 2m is even showing that n(n-1) is even

------------

Let's say that n is odd this time. That means n = 2k+1 for some integer k

And also n-1 = 2k+1-1 = 2k showing n-1 is even

Now multiply n and n-1

n(n-1) = (2k+1)(2k) = 2k(2k+1) = 2m

where m = k(2k+1) is an integer

We've shown that n(n-1) is even here as well.

------------

So overall, n(n-1) is even regardless if n is even or if n is odd.

Either n or n-1 will be even. If you multiply an even number with any number, the result will be even.

=======================================================

Part (2)

n is some positive integer

2n is always even since 2 is a factor of 2n

2n+1 is always odd because we're adding 1 to an even number. The sequence of integers goes even,odd,even,odd, etc and it does this forever.

-----------

Another way to see how 2n+1 is odd is to divide 2n+1 over 2 and you'll find that we get (2n+1)/2 = 2n/2+1/2 = n+0.5

The 0.5 at the end is not an integer, so there's no way that (2n+1)/2 is an integer; therefore 2n+1 is odd.

6 0
2 years ago
Please help i need to finish this! thank you
jolli1 [7]

Answer:

x = 0

Step-by-step explanation:

0 = x²

√(0) = x

x = 0

Screenshot of Desmos graph attached showing y = x² and y = 0 intersecting.

3 0
3 years ago
Other questions:
  • Jack deposited $1,400 in his bank account. After 3 years, the account earned
    5·1 answer
  • I’m confused on this one
    10·2 answers
  • Probability &amp; Statistics: The Quarantine Puzzle D You are stuck at home watching people walk down the street. Assuming half
    10·2 answers
  • What is the answer to m+4=-12
    5·1 answer
  • Find the percent of increase from 1.5 inches to 6 inches​
    6·1 answer
  • Marketing estimates that a new instrument for the analysis of soil samples will be very successful, moderately successful, or un
    11·1 answer
  • Find the area of the figure.
    9·1 answer
  • Use the substituation method to solve 6=-4x+y -5x-y=21
    10·1 answer
  • 4x2 + 3 = -7x <br>solve for x<br>x=_,_​
    7·1 answer
  • Henry will spend at most $30 on gifts. So far, he has spent $21. What are the possible additional amounts he will spend? Use c f
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!