4x/15 = 60/x
4x^2 = 900
x^2 = 225
x = 15
Answer:
86
Step-by-step explanation:
![48÷6 [-52 ÷2 {4 - 3 (2 - 15÷3)}] \\ 8[-52 ÷2 {4 - 3 (2 - 15÷3)}] \\ 8[-52 ÷2{1 (2 - 15÷3)}] \\ 8[ - 2.5{ (2 - 15÷3)}] \\ 8[ - 2.5{ ( - 13÷3)}] \\ 8[ - 2.5{ ( - 4.3)}] \\ 8[10.75 { }] \\ = 86](https://tex.z-dn.net/?f=48%C3%B76%20%5B-52%20%C3%B72%20%7B4%20-%203%20%282%20-%2015%C3%B73%29%7D%5D%20%5C%5C%208%5B-52%20%C3%B72%20%7B4%20-%203%20%282%20-%2015%C3%B73%29%7D%5D%20%5C%5C%208%5B-52%20%C3%B72%7B1%20%282%20-%2015%C3%B73%29%7D%5D%20%5C%5C%208%5B%20-%202.5%7B%20%282%20-%2015%C3%B73%29%7D%5D%20%5C%5C%208%5B%20-%202.5%7B%20%28%20-%2013%C3%B73%29%7D%5D%20%5C%5C%208%5B%20-%202.5%7B%20%28%20%20-%204.3%29%7D%5D%20%5C%5C%208%5B10.75%20%7B%20%7D%5D%20%5C%5C%20%20%3D%2086)
Answer:
54
Step-by-step explanation:
To solve problems like this, always recall the "Two-Tangent theorem", which states that two tangents of a circle are congruent if they meet at an external point outside the circle.
The perimeter of the given triangle = IK + KM + MI
IK = IJ + JK = 13
KM = KL + LM = ?
MI = MN + NI ?
Let's find the length of each tangents.
NI = IJ = 5 (tangents from external point I)
JK = IK - IJ = 13 - 5 = 8
JK = KL = 8 (Tangents from external point K)
LM = MN = 14 (Tangents from external point M)
Thus,
IK = IJ + JK = 5 + 8 = 13
KM = KL + LM = 8 + 14 = 22
MI = MN + NI = 14 + 5 = 19
Perimeter = IK + KM + MI = 13 + 22 + 19 = 54
Answer:
Step-by-step explanation:
Find the diagram attached. From the diagram, we can see that;
<USW = <TSR (vertically opposite angles)
Given
<USW = 7x-34
<TSR = 4x+29
Equate
7x-34 = 4x+29
7x-4x = 29+34
3x = 63
x = 63/3
x = 21°
Find <USW
<USW =7x-34
<USW =7(21)-34
<USW = 147-34
<USW = 113°
Hence the measure of <USW is 113°