Answer:
(a) 0.345 T
(b) 0.389 T
Solution:
As per the question:
Hall emf, 
Magnetic Field, B = 0.10 T
Hall emf, 
Now,
Drift velocity, 

Now, the expression for the electric field is given by:
(1)
And

Thus eqn (1) becomes
where
d = distance
(2)
(a) When 

(b) When 

Answer:
I'd say 85km sorry if wrong
Explanation:
Answer:
laser's wavelength λ = 597.4 nm
Explanation:
Given:
Slit spacing, d = 1.17mm
Tenth bright fringe y = 4.57cm
Distance from slits, D = 8.95m
n = 10
λ = (d * y) / (D * n)
λ = (1.17x10⁻³ * 4.57x10⁻²) / (8.95 x 10)
λ = 5.3469x10⁻⁵ / 8.95x10¹
λ = 0.5974 x 10⁻⁵⁻¹
λ = 0.5974 x 10⁻⁶ m
λ = 597.4 x 10⁻⁹ m
λ = 597.4 nm
Answer:
22kj
Explanation:
set h = 0 at the end of slide.
final height is -12m
initial condition will be Ui = 0
Ki = 1/2mv² = 1/2 x 61 x (27)² = 22234.5J
Final condition is Ui = mgh = 61 x 9.8 x -12 = -7173J
Ki = 1/2mv²
Ki= 1/2 x 61 x (16)² = 7808J
conservation energy says that
Ui + Ki = Uf +Kf +ΔEth
so ΔEth = Ui + Ki - Uf - Kf
ΔEth = 22234.5 - 7808 + 7173
ΔEth = 21600J
ΔEth =22Kj