Answer:
2.98 m/s^2
Explanation:
I have done this before and it was a question on my physics test
The reason as to why the substage condenser does not need to be included in computing the magnification and the only component needed is the ocular lens and the objective lenses is because the condenser is only responsible for gathering light and it does not contribute with the magnification of the object under the microscope.
Answer:
1.122 m/s
Explanation:
So usually a river with a speed of 1 meters per second can transport particle that weighs:

If the particle is twice as massive as usual, then its weights would be 1 * 2 = 2kg
This means the river must be flowing at a speed of

TLDR: It will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.
This is an example that requires you to investigate the properties that occur in electric generators; for example, hydroelectric dams produce electricity by forcing a coil to rotate in the presence of a magnetic field, generating a current.
To solve this, we need to understand the principles of electromotive forces and Lenz’ Law; changing the magnetic field conditions around anything with this potential causes an induced current in the wire that resists this change. This principle is known as Lenz’ Law, and can be described using equations that are specific to certain situations. For this, we need the two that are useful here:
e = -N•dI/dt; dI = ABcos(theta)
where “e” describes the electromotive force, “N” describes the number of loops in the coil, “dI” describes the change in magnetic flux, “dt” describes the change in time, “A” describes the area vector of the coil (this points perpendicular to the loops, intersecting it in open space), “B” describes the magnetic field vector, and theta describes the angle between the area and mag vectors.
Because the number of loops remains constant and the speed of the coils rotation isn’t up for us to decide, the only thing that can increase or decrease the emf is the change in magnetic flux, represented by ABcos(theta). The magnetic field and the size of the loop are also constant, so all we can control is the angle between the two. To generate the largest emf, we need cos(theta) to be as large as possible. To do this, we can search a graph of cos(theta) for the highest point. This occurs when theta equals 90 degrees, or a right angle. Therefore, the electromotive potential will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.
Hope this helps!
Answer:
v = 14 m/s
Explanation:
given,
radius of dip = 40 m
The passengers in a roller coaster car feel 50% heavier than their true weight.
Apparent weight



When the car is at the bottom, the weight will be acting downwards and the centripetal force will also be acting downward where as Normal force which is apparent weight will be acting in upward direction.
now,





v = 14 m/s