Answer:
note:
<u>solution is attached in word form due to error in mathematical equation. furthermore i also attach Screenshot of solution in word due to different version of MS Office please find the attachment</u>
Answer:
i 5.3 cm ii. 72 cm
Explanation:
i
We know upthrust on iron = weight of mercury displaced
To balance, the weight of iron = weight of mercury displaced . So
ρ₁V₁g = ρ₂V₂g
ρ₁V₁ = ρ₂V₂ where ρ₁ = density of iron = 7.2 g/cm³ and V₁ = volume of iron = 10³ cm³ and ρ₂ = density of mercury = 13.6 g/cm³ and V₂ = volume of mercury displaced = ?
V₂ = ρ₁V₁/ρ₂ = 7.2 g/cm³ × 10³ cm³/13.6 g/cm³ = 529.4 cm³
So, the height of iron above the mercury is h = V₂/area of base iron block
= 529.4 cm³/10² cm² = 5.294 cm ≅ 5.3 cm
ρ₁V₁g = ρ₂V₂g
ii
ρ₁V₁ = ρ₃V₃ where ρ₁ = density of iron = 7.2 g/cm³ and V₁ = volume of iron = 10³ cm³ and ρ₃ = density of water = 1 g/cm³ and V₃ = volume of water displaced = ?
V₃ = ρ₁V₁/ρ₃ = 7.2 g/cm³ × 10³ cm³/1 g/cm³ = 7200 cm³
So, the height of column of water is h = V₃/area of base iron block
= 7200 cm³/10² cm² = 72 cm
Celina should perform the following method to get pure water:
Boil the water in a pan, as the water boils it changes into gas (water vapours) these vapours should be cooled down through the process of condensation which changes gas into liquid form, Through this process germs would be killed due to high temperature and the salt will remain in the pan as salt has higher boiling point than water,
Answer:
R = 710.7N
L = 67.689 N
During gravity fall L = R = 0 N
Explanation:
So the acceleration that the elevator is acting on the woman (and the package) in order to result in a net acceleration of 0.15g is
g + 0.15g = 1.15g
The force R that the elevator exerts on her feet would be product of acceleration and total mass (Newton's 2nd law):
a(m + M) = 1.15g(57 + 6) = 1.15*9.81*63 = 710.7N
The force L that she exerts on the package would be:
am = 1.15g *6 = 1.15*9.81*6 = 67.689N
When the system is falling, all have a net acceleration of g. So the acceleration that the elevator exerts on the woman (and the package) is 0, and so are the forces L and R.
Answer:
300 cos 30 = 40 a + 40 * .2 * 10
Total force = mass * acceleration + frictional force
260 = 40 a + 80
a = 180 / 40 = 4.5 m/s^2
Check:
15 a + 15 * 10 * .2 = T acceleration of 15 kg block (assuming a = 4.5)
T = 15 (4.5) + 30 = 97.5 force required to accelerate 15 kg block
260 - 97.5 = 162.5 net force on 25 kg block
162.5 = 4.5 (25) + 25 * 10 * .2
162.5 = 112.5 + 50 = 162.5
4.5 m/s^2 checks out as correct