1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
seropon [69]
3 years ago
13

A temperature of 20°C is equal to ? °F.

Physics
2 answers:
Papessa [141]3 years ago
6 0
The answer is 68 F. i hope this helps
-Dominant- [34]3 years ago
4 0

Answer:

68 degree F

Explanation:

The relation between Celcius scale and Fahrenheit scale is given below

(C - 0) / 100 = (F - 32) / 180

20 / 100 = ( F - 32) / 180

180 / 5 = F - 32

36 + 32 = F

F = 68 degree F

You might be interested in
suppose a car manufacturer tested its cars for front end collsion by hauling them up on a crane and dropping them from a certain
IRINA_888 [86]

Initial height: 66.5 m

Explanation:

The problem can be solved by using the principle of conservation of energy.

If we neglect air resistance, the total mechanical energy of the car is conserved during the fall, therefore we can write:

K_i + U_i = K_f + U_f

where :

K_i = 0 is the kinetic energy of the car at the top (it starts from rest)

U_i = mgh is the gravitational potential energy of the car at the top, with:

m = the mass of the car

g = the acceleration of gravity

h = the heigth of the car

K_f = \frac{1}{2}mv^2 is the kinetic energy of the car just before hitting the ground, with

v = 130 km/h final speed of the car

U_f = 0 is the gravitational potential energy of the car at the bottom

Re-arranging the equation,  we find

mgh=\frac{1}{2}mv^2

and we have:

g=9.8 m/s^2\\v = 130 km/h = 36.1 m/s

Solving for h, we find the initial height of the car:

h=\frac{v^2}{2g}=\frac{36.1^2}{2(9.8)}=66.5 m

Learn more about kinetic energy and potential energy:

brainly.com/question/6536722

brainly.com/question/1198647  

brainly.com/question/10770261  

#LearnwithBrainly

5 0
3 years ago
2200 kg semi truck driving down the highway has lost control. The truck rolls across the median and into oncoming traffic. The t
serious [3.7K]

Answer:

The semi truck travels at an initial speed of 69.545 meters per second downwards.

Explanation:

In this exercise we see a case of an entirely inellastic collision between the semi truck and the car, which can be described by the following equation derived from Principle of Linear Momentum Conservation: (We assume that velocity oriented northwards is positive)

m_{S}\cdot v_{S}+m_{C}\cdot v_{C} = (m_{S}+m_{C})\cdot v (1)

Where:

m_{S}, m_{C} - Masses of the semi truck and the car, measured in kilograms.

v_{S}, v_{C} - Initial velocities of the semi truck and the car, measured in meters per second.

v - Final speed of the system after collision, measured in meters per second.

If we know that m_{S} = 2200\,kg, m_{C} = 2000\,kg, v_{C} = 45\,\frac{m}{s} and v = -15\,\frac{m}{s}, then the initial velocity of the semi truck is:

m_{S}\cdot v_{S} = (m_{S}+m_{C})\cdot v -m_{C}\cdot v_{C}

v_{S} = \frac{(m_{S}+m_{C})\cdot v - m_{C}\cdot v_{C}}{m_{S}}

v_{S} = \left(1+\frac{m_{C}}{m_{S}} \right)\cdot v - \frac{m_{C}}{m_{S}} \cdot v_{C}

v_{S} = v +\frac{m_{C}}{m_{S}}\cdot (v-v_{C})

v_{S} = -15\,\frac{m}{s}+\left(\frac{2000\,kg}{2200\,kg} \right) \cdot \left(-15\,\frac{m}{s}-45\,\frac{m}{s}  \right)

v_{S} = -69.545\,\frac{m}{s}  

The semi truck travels at an initial speed of 69.545 meters per second downwards.

3 0
2 years ago
PLEASE HEELP!!!
Ann [662]

Answer:

The "pressure" of the electricity is electric potential. Electric potential is the amount of energy available to push each unit of charge through an electric circuit. The unit of electric potential is the volt. ... A volt is the force needed to move one amp through a conductor that has 1 ohm of resistance

8 0
3 years ago
a train is moving with an initial velocity of 30 m/s, the brakes are applied so as to produce a uniform acceleration of -1.5 m/s
Pepsi [2]

Answer:

\boxed{\sf Time \ in \ which \ train \ will \ come \ to \ rest = 20 \ sec}

Given:

Initial velocity (u) = 30 m/s

Final speed (v) = 0 m/s

Acceleration (a) = - 1.5 m/,s²

To Find:

Time in which train will come to rest (t).

Explanation:

\sf From \ equation \ of \ motion: \\ \sf \implies \bold{v = u + at} \\ \\ \sf Substituting \ value \ of \ v, \ u \ and \ a:  \\  \sf \implies 0 = 30 + ( - 1.5)(t) \\   \sf  \implies 0 = 30 - 1.5(t) \\  \sf \implies 30 - 1.5(t) = 0 \\  \\  \sf Subtract  \: 30  \: from  \: both  \: sides: \\  \sf \implies (30 -  \boxed{ \sf 30}) - 1.5(t) =  \boxed{ \sf  - 30} \\  \\  \sf 30 - 30 = 0 :  \\  \sf \implies  - 1.5(t) =  - 30 \\  \\  \sf Divide  \: both  \: sides \:  of \:  - 1.5(t) =  - 30 \: by \:  - 1.5 :  \\  \sf \implies  \frac{  - 1.5(t)}{ \boxed{ \sf - 1.5}}  =  \frac{ - 30}{ \boxed{ \sf -1.5 }}  \\  \\  \sf \frac{ \cancel{ \sf 1.5}}{\cancel{ \sf 1.5}}  = 1 :  \\  \sf \implies t =  \frac{ - 30}{ - 1.5}  \\  \\   \sf  \frac{ - 30}{ - 1.5}  =  \frac{\cancel{ \sf 1.5} \times 20}{\cancel{ \sf 1.5}}  = 20 :  \\  \sf  \implies t = 20 \: sec

So,

Time in which train will come to rest = 20 seconds

4 0
2 years ago
PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!! I CANNOT RETAKE THIS AND I NEED ALL CORRECT ANSWERS ONLY!!!
valentinak56 [21]

Answer:

Electric Current

Explanation:

The flow (or free movement) of these electrons through a wire.

Pretty sure :)

6 0
3 years ago
Read 2 more answers
Other questions:
  • A daredevil is shot out of a cannon at 45.0° to the horizontal with an initial speed of 31.0 m/s. A net is positioned a horizont
    12·2 answers
  • When pressing the accelerator on a car, the ___________ energy of the fuel is transformed into the _____________ energy that mak
    10·2 answers
  • A battery is rated at 12 V and 160 A-h. How much energy does the battery store? What is the cost of this energy at $0. 15/kWh?
    7·1 answer
  • Suppose that water is pouring into a swimming pool in the shape of a right circular cylinder at a constant rate of 5 cubic feet
    15·1 answer
  • A medical ultrasound imaging system sends out a steady stream of very short pulses. To simplify analysis, the reflection of one
    7·1 answer
  • The frequency of a wave is 200 Hz. The wavelength is 0.1 m. What is the period of the wave?
    13·1 answer
  • _____ = force × distance<br> A. Work<br> B. Velocity<br> C. Pressure<br> D. Momentum
    15·1 answer
  • you and 3 friends apply a combined force of 489.5n to push a piano. The amount of work done is 1762.2j. What distance did the pi
    6·1 answer
  • How is a coil of current carrying wire similar to a bar magnet
    5·1 answer
  • If distance between two charges increased 5 times then force between them
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!