1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lapo4ka [179]
3 years ago
12

Please answer the question below (ABOUT VECTORS AND MAGNITUDE)

Mathematics
1 answer:
coldgirl [10]3 years ago
4 0

(a) <em>v</em> appears to have a fixed direction along the positive <em>x</em>-axis. If ||<em>u</em>|| = 150 N, ||<em>v</em>|| = 220 N, then when <em>θ</em> = 30°, you have

<em>u</em> = (150 N) (cos(30°) <em>i</em> + sin(30°) <em>j</em> ) ≈ (129.904 <em>i</em> + 75 <em>j</em> ) N

<em>v</em> = (220 N) (cos(0°) <em>i</em> + sin(0°) <em>j</em> ) = (220 <em>i</em> ) N

(<em>i</em> and <em>j</em> are the unit vectors in the positive <em>x</em> and <em>y</em> directions)

and their sum is

<em>u</em> + <em>v</em> ≈ (349.904 <em>i</em> + 75 <em>j</em> ) N

with magnitude

||<em>u</em> + <em>v</em>|| ≈ √((349.904)² + (75)²) N ≈ 357.851 N ≈ 357.9 N

and at angle <em>φ</em> made with the positive <em>x</em>-axis such that

tan(<em>φ</em>) ≈ (75 N) / (349.904 N)   →   <em>φ</em> ≈ 12.098° ≈ 12.1°

(b) Letting <em>θ</em> vary from 0° to 180° would make <em>v</em> a function of <em>θ</em> :

<em>u</em> = (150 N) (cos(<em>θ</em>) <em>i</em> + sin(<em>θ</em>) <em>j</em> ) = (150 cos(<em>θ</em>) <em>i</em> + 150 sin(<em>θ</em>) <em>j</em> ) N

Then

<em>u</em> + <em>v</em> = ((220 + 150 cos(<em>θ</em>)) <em>i</em> + (150 sin(<em>θ</em>)) <em>j</em> ) N

→   <em>M</em> = ||<em>u</em> + <em>v</em>|| = √((220 + 150 cos(<em>θ</em>))² + (150 sin(<em>θ</em>))²) N

<em>M</em> = √(48,400 + 66,000 cos(<em>θ</em>) + 22,500 cos²(<em>θ</em>) + 22,500 sin²(<em>θ</em>)) N

<em>M</em> = 10 √(709 + 660 cos(<em>θ</em>)) N

(c) As a function of <em>θ</em>, <em>u</em> + <em>v</em> makes an angle <em>α</em> with the positive <em>x</em>-axis such that

tan(<em>α</em>) = (150 sin(<em>θ</em>) / (220 + 150 cos(<em>θ</em>))

→   <em>α</em> = tan⁻¹((15 sin(<em>θ</em>) / (22 + 15 cos(<em>θ</em>)))

(d) Filling in the table is just a matter of evaluating <em>M</em> and <em>α</em> for each of the given angles <em>θ</em>. For example, when <em>θ</em> = 0°,

<em>M</em> = 10 √(709 + 660 cos(0°)) N = 370 N

<em>α</em> = tan⁻¹((15 sin(0°) / (22 + 15 cos(0°))) = 0°

When <em>θ</em> = 30°, you get the same result as in part (a).

When <em>θ</em> = 60°,

<em>M</em> = 10 √(709 + 660 cos(60°)) N ≈ 323.3 N

<em>α</em> = tan⁻¹((15 sin(60°) / (22 + 15 cos(60°))) = 23.8°

and so on.

You might be interested in
4 and 5/6 - 1 and 5/6 ? help me pls ! i love you muah i mean
Otrada [13]
4 \frac{5}{6} -1 \frac{5}{6}\\&#10;\frac{29}{6}-\frac{11}{6}\\&#10;\frac{18}{6}\\\\&#10;3
8 0
3 years ago
Read 2 more answers
Find the area to the nearest hundredth
Savatey [412]

Answer:

9.0586 OR

9.06

Step-by-step explanation:

IDK, used fusion 360

6 0
3 years ago
The base of a solid in the region bounded by the two parabolas y2 = 8x and x2 = 8y. Cross sections of the solid perpendicular to
Usimov [2.4K]

The two curves intersect at two points, (0, 0) and (8, 8):

x^2=8y\implies y=\dfrac{x^2}8

y^2=\dfrac{x^4}{64}=8x\implies\dfrac{x^4}{64}-8x=0\implies\dfrac{x(x-8)(x^2+8x+64)}{64}=0

\implies x=0,x=8\implies y=0,y=8

The area of a semicircle with diameter d is \dfrac{\pi d^2}8. The diameter of each cross-section is determined by the vertical distance between the two curves for any given value of x between 0 and 8. Over this interval, y^2=8x\implies y=\sqrt{8x} and \sqrt{8x}>\dfrac{x^2}8, so the volume of this solid is given by the integral

\displaystyle\frac\pi8\int_0^8\left(\sqrt{8x}-\dfrac{x^2}8\right)^2\,\mathrm dx=\frac{288\pi}{35}

6 0
3 years ago
What is<br> -1 5/6 - (-3 1/4) ?
lions [1.4K]

Answer:

1\frac{5}{12}

Step-by-step explanation:

Eliminating a negative and changing our operation

1\frac{5}{6} +3\frac{1}{4}

Rewriting our equation with parts separated

-1-\frac{5}{6} +3+\frac{1}{4}

Solving the whole number parts

-1+3=2

Solving the fraction parts

-\frac{5}{6} +\frac{1}{4} =[?]

Find the LCD of 5/6 and 1/4 and rewrite to solve with the equivalent fractions.

LCD = 12

-\frac{10}{12} +\frac{3}{12}=-\frac{7}{12}

Combining the whole and fraction parts

2-\frac{7}{12} =1\frac{5}{12}

[RevyBreeze]

8 0
2 years ago
Which expression is equivalent to 1/3 y?
MrMuchimi

Answer:

The answer is 1/6y+1/6(y+12)-2

Step-by-step explanation:

I used a math calculator.

3 0
3 years ago
Read 2 more answers
Other questions:
  • What is the product of -3 and 9?
    10·1 answer
  • Triangle A'B'C' is the image of
    8·1 answer
  • Which statement is true about the equation (x – 4)(x + 2) = 16? The equation x – 4 = 16 can be used to solve for a solution of t
    8·2 answers
  • Average national teachers salaries can be modeled using the equation y=9.25(1.06)^n , where y is the salary in thousands of doll
    9·1 answer
  • Question:
    5·1 answer
  • Find the area of the triangle defined by the given system?
    9·1 answer
  • Find the minimum value of C=4x +2y
    6·1 answer
  • Elena is 56 inches tall what is her height in meters?
    7·1 answer
  • Isabel and Jonah had 2 pies. Isabel wrote the equation ½ + ⅙ = 4/6 and Jonah wrote 3/6 + 1/6 = 4/6 to represent combining the pi
    15·1 answer
  • Y = 1/2x^2 – 2x + 1<br> Does anyone know how to turn this into vertex form?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!