Answer:
The expression that represents the length of 1 of the triangle's legs is y + 5
Step-by-step explanation:
An isosceles triangle has two sides equal which are the triangle legs. Let b represent the base of the triangle and l represent one of the triangle's legs. Then, the perimeter, P is given by
P = l + l + b
i.e P = 2l + b
From the question, P = 6y + 12 and b = 4y +2
∴ 6y + 12 = 2l + 4y + 2
6y - 4y + 12 - 2 = 2l
2y + 10 = 2l
∴ 2l = 2y + 10
Then,
l = (2y+10)/2
l = y + 5
Hence, the expression that represents the length of 1 of the triangle's legs is y + 5
Answer:

Step-by-step explanation:

Answer:

Step-by-step explanation:
The side that is parallel to BC is EF
Find the slope of EF:

Easiest way is just put the formula in point-slope form and simplify.
Let's use point F, which is (6,2)

Simplify:

Add 2 on both sides:

Hope this helped
Answer:
Step-by-step explanation:
<em>(17).</em> g(x) = x³ + 4x
f(x) = 4x + 1
( f × g )( x ) = ( x³ + 4x )( 4x + 1 ) = <em>4 </em>
<em> + x³ + 16x² + 4x</em>
<em>(19).</em> f(t) = 4t - 4
g(t) = t - 2
( 4f + 3g )( t ) = 4(4t - 4) + 3(t - 2) = 16t - 16 + 3t - 6 = <em>19t - 22</em>
<em>(21).</em> h(t) = t + 3
g(t) = 4t + 1
h(t - 2) + g(t - 2) = ( t - 2 ) + 3 + 4( t - 2 ) + 1 = t + 4t - 2 + 3 - 8 + 1 = <em>5t - 6</em>