Answer:
2NaOH (aq) + CaCl2 (aq) -> 2NaCl(aq) + Ca(OH)2(s)
Formula of precipitate: Ca(OH)2 <em>(s)</em>
Explanation:
First, we do the double replacement reaction to determine our chemical equation between the reactants and products. Once we have our products, with a solubility chart (I added one below) we can determine which of the products is soluble or insoluble.
In this case NaCl is soluble or aqueous (meaning it can dissolve in water) and Ca(OH)2 is insoluble (meaning that when the reactions takes place, these two will form a solid/precipitate)
Answer:
Explanation:
a )
1.25 g MgO contains .754 g of Mg .Rest will be O
so oxide = 1.25 - .754 = 0.496 g
ratio of magnesium to oxide = .754/.496 = 1.52
b) 1.25 g of MgO contains .754 g of Mg
534 g of MgO contains .754 x 534 / 1.25 g = 322.11 g
Answer:
M = 20.5 g/mol
Explanation:
Given data:
Volume of gas = 1.20 L
Mass of gas = 1.10 g
Temperature and pressure = standard
Solution:
First of all we will calculate the density.
Formula:
d = mass/ volume
d = 1.10 g/ 1.20 L
d = 0.92 g/L
Now we will calculate the molar mass.
d = PM/RT
0.92 g/L = 1 atm × M / 0.0821 atm.L/mol.K ×273.15 K
M = 0.92 g/L × 0.0821 atm.L/mol.K ×273.15 K / 1 atm
M = 20.5 g/mol
Answer:
A. Herbivores have longer digestive systems than carnivores have.
Explanation:
We can conclude that the herbivores have longer digestive systems compared to carnivores.
Carnivores feeds on other animals whereas herbivores eats plants.
- Most herbivores have a four stomach compartment system that helps them process and digest their food.
- This is because they have to process cellulose in plants which needs to be properly broken down.
- Flesh eating carnivores do not require this arrangement.
- The four stomach compartment of most herbivores includes Rumen, Reticulum, omasum and abomasum.
- They also chew the cud whereby they regurgitate food materials.
Answer:
(a) The coefficient of performance of an irreversible refrigeration cycle is always less than the coefficient of performance of a reversible refrigeration cycle when both exchange energy by heat transfer with the same two reservoirs.
Explanation:
According to the Kelvin–Planck statement of the second law of thermodynamics ,it is not possible to construct a device which operates in cycle and does not produce effect on the environment than the production of work.
We know that
Coefficient of performance is the ratio of desired effect to the work input in a cycle.
Given all option is correct but most appropriate option is a.
So the option a is correct
(a) The coefficient of performance of an irreversible refrigeration cycle is always less than the coefficient of performance of a reversible refrigeration cycle when both exchange energy by heat transfer with the same two reservoirs.