Taking into account the scientific notation, the result of the sum is 10.84300×10³.
- <u><em>Scientific notation</em></u>
First, remember that scientific notation is a quick way to represent a number using powers of base ten.
The numbers are written as a product:
a×10ⁿ
where:
- a is a real number greater than or equal to 1 and less than 10, to which a decimal point is added after the first digit if it is a non-integer number.
- n is an integer, which is called an exponent or an order of magnitude. Represents the number of times the comma is shifted. It is always an integer, positive if it is shifted to the left, negative if it is shifted to the right.
-
<u><em>Sum in scientific notation</em></u>
You want to add two numbers in scientific notation. It should be noted that when the numbers to be added do not have the same base 10 exponent, the base 10 power with the highest exponent must be found. In this case, the highest exponent is 3.
Then all the values are expressed as a function of the base 10 exponent with the highest exponent. In this case: 9.7300×10²= 0.97300×10³
Taking the quantities to the same exponent, all you have to do is add what was previously called the number "a". In this case:
0.97300×10³ + 9.8700×10³= (0.97300+ 9.8700)×10³= 10.84300×10³
Finally, the result of the sum is 10.84300×10³.
Learn more:
Answer:
0.479 M or mol/L
Explanation:
So Molarity is moles/litres of solution...often written as M=mol/L
So here we are given grams of BaCl2 which we have to convert to moles. To convert to moles of BaCl2 we have to divide 63.2 g BaCl2 by molar mass of BaCl2 which is 208.23 g/mol so you get 63.2/208.23 = 0.3035 moles of BaCl2
Second step is converting the 634mL to litres by simply dividing by 1000 because we know 1 litre has 1000ml so 634/1000 = 0.634L
Now we just plug these guys in our molarity formula M=mol/L
M= 0.3035/0.634 = 0.479 M or mol/L
Answer:
Atoms must have similar electronegativities in order to share electrons in a covalent bond.
Explanation:
Covalent bonding is one of the bondings that occurs between the atoms of elements. It is the bonding in which atoms share their valence electrons with one another. However, the ELECTRONEGATIVITY, which is the ability of an atom to be attracted to electrons play a major role in the formation of covalent bonds.
When atoms of different electronegativities combine, the more electronegative atom pulls more electrons towards itself, hence, an IONIC bond is formed. However, when the electronegativities of the atoms are similar, the sharing of their electrons becomes stronger. Hence, ATOMS MUST HAVE SIMILAR ELECTRONEGATIVITIES in order to share electrons in a covalent bond.
Save Time & Ensure Consistent Reproducible Results With Waters LC Columns & Supplies. A Range Of Chromatography Column To Meet The Needs Of Virtually Every Application