Answer:
The equation to show the the correct form to show the standard molar enthalpy of formation:

Explanation:
The standard enthalpy of formation or standard heat of formation of a compound is the change of enthalpy during the formation of 1 mole of the substance from its constituent elements, with all substances in their standard states.
Given, that 1 mole of
gas and 1 mole of
liquid gives 2 moles of HBr gas as a product.The reaction releases 72.58 kJ of heat.

Divide the equation by 2.

The equation to show the the correct form to show the standard molar enthalpy of formation:

<span>Chromium is a transition metal and it has 24 electrons and here is the orbital diagram. If we're going to make this short hand and make the electron configurationfor this we would make this 1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d4 okay from now on every time you see 3d4 you're going to change it, we do not like 3d4.</span>
Answer:
![[Pb^{2+}]=3.9 \times 10^{-2}M](https://tex.z-dn.net/?f=%5BPb%5E%7B2%2B%7D%5D%3D3.9%20%5Ctimes%2010%5E%7B-2%7DM)
this is the concentration required to initiate precipitation
Explanation:
⇄
Precipitation starts when ionic product is greater than solubility product.
Ip>Ksp
Precipitation starts only when solution is supersaturated because solution become supersaturated then it does not stay in this form and precipitation starts itself only solution become saturated.
This usually happens when two solutions containing separate sources of cation and anion are mixed together and here also we are mixing lead (||)nitrate solution(source of lead(||)) into the Cl- solution.
![Ip=[Pb^{2}][2Cl^-]^2=Ksp](https://tex.z-dn.net/?f=Ip%3D%5BPb%5E%7B2%7D%5D%5B2Cl%5E-%5D%5E2%3DKsp)

lets solubility=S
![[Pb^{2+}] = S](https://tex.z-dn.net/?f=%5BPb%5E%7B2%2B%7D%5D%20%3D%20S)
![[Cl^-]=2S](https://tex.z-dn.net/?f=%5BCl%5E-%5D%3D2S)
![Ksp=[Pb^{2+}]\times [Cl^-]^2](https://tex.z-dn.net/?f=Ksp%3D%5BPb%5E%7B2%2B%7D%5D%5Ctimes%20%5BCl%5E-%5D%5E2)


![S=\sqrt[3]{\frac{Ksp}{4} }](https://tex.z-dn.net/?f=S%3D%5Csqrt%5B3%5D%7B%5Cfrac%7BKsp%7D%7B4%7D%20%7D)

this is the concentration required to initiate precipitation
Answer:
The precipitate is CuS.
Sulfide will precipitate at [S2-]= 3.61*10^-35 M
Explanation:
<u>Step 1: </u>Data given
The solution contains 0.036 M Cu2+ and 0.044 M Fe2+
Ksp (CuS) = 1.3 × 10-36
Ksp (FeS) = 6.3 × 10-18
Step 2: Calculate precipitate
CuS → Cu^2+ + S^2- Ksp= 1.3*10^-36
FeS → Fe^2+ + S^2- Ksp= 6.3*10^-18
Calculate the minimum of amount needed to form precipitates:
Q=Ksp
<u>For copper</u> we have: Ksp=[Cu2+]*[S2-]
Ksp (CuS) = 1.3*10^-36 = 0.036M *[S2-]
[S2-]= 3.61*10^-35 M
<u>For Iron</u> we have: Ksp=[Fe2+]*[S2-]
Ksp(FeS) = 6.3*10^-18 = 0.044M*[S2-]
[S2-]= 1.43*10^-16 M
CuS will form precipitates before FeS., because only 3.61*10^-35 M Sulfur Ions are needed for CuS. For FeS we need 1.43*10^-16 M Sulfur Ions which is much larger.
The precipitate is CuS.
Sulfide will precipitate at [S2-]= 3.61*10^-35 M
Restriction as a barrier to transformation apparently contributes to sexual isolation since horizontal transfer can encompass chromosomal DNA and plasmids. I hope my answer has come to your help. God bless and have a nice day ahead!