Answer:
Explanation:
1)<u> Principal quantum number, n = 2</u>
- n is the principal quantum number and indicates the main energy level.
<u>2) Second quantum number, ℓ</u>
- The second quantum number, ℓ, is named, Azimuthal quantum number.
The possible values of ℓ are from 0 to n - 1.
Hence, since n = 2, there are two possible values for ℓ: 0, and 1.
This gives you two shapes for the orbitals: 0 corresponds to "s" orbitals, and 1 corresponds to "p" orbitals.
<u>3) Third quantum number, mℓ</u>
- The third quantum number, mℓ, is named magnetic quantum number.
The possible values for mℓ are from - ℓ to + ℓ.
Hence, the poosible values for mℓ when n = 2 are:
- for ℓ = 1, mℓ = -1, 0, or +1.
<u>4) Fourth quantum number, ms.</u>
- This is the spin number and it can be either +1/2 or -1/2.
Therfore the full set of possible states (different quantum number for a given atom) for n = 2 is:
- (2, 0, 0 +1/2)
- (2, 0, 0, -1/2)
- (2, 1, - 1, + 1/2)
- (2, 1, -1, -1/2)
- (2, 1, 0, +1/2)
- (2, 1, 0, -1/2)
- (2, 1, 1, +1/2)
- (2, 1, 1, -1/2)
That is a total of <u>8 different possible states</u>, which is the answer for the question.
Yes because
Kate: 3X2 = 6
Jake: 3X2 = 6
Emily: 3X2 = 6
add all of those together and you get 18
Answer:
Imagine an easier version of this problem: You have a board 5 feet long that you must cut (divide, right?) into two equal parts. It is probably clear to you that you simply divide the length (5) by the number of parts you're dividing it into (2) to obtain the length of each piece (2.5 feet).
Use the same method for your problem 5 feet divided by 6 is 0.83 feet per piece.
We do not ordinarily divide feet into decimal portions, but instead into inches. Since an inch is 1/12 of a foot, you could simply say 5/6 = how many twelfths? or 5/6 = n/12 Solve this by inspection or by cross multiplying 5 times 12 equals n times 6. So n must equal 10, and your pieces of board are each 10 inches long.
Answer:
156.06 ft²
Step-by-step explanation:
The applicable formula for the area of the triangle is ...
Area = (1/2)bc·sin(A)
Filling in the given numbers, you have ...
Area = (1/2)(30 ft)(14 ft)·sin(48°) ≈ 156.06041335 ft²
The area of the triangle is about 156.06 square feet.
_____
Sufficient digits are provided here so that you can round to the precision you (or your computer) may desire.