Answer:
a. ATP and NADPH
Explanation:
Light-dependent reactions of photosynthesis include splitting of water in the presence of sunlight and release of electrons. The electrons move from the reaction center of the PS-II via electron carriers to the PS-I. From the reaction center of PS-I, the electrons finally reach NADP reductase and reduce NADP into NADPH.
During this electron transfer via electron carriers, a proton concentration gradient is generated across the thylakoid membrane. The energy of this gradient is used to drive ATP synthesis. ATP and NADPH formed during the light-dependent phase of photosynthesis are then used during the reactions of the Calvin cycle.
The answer is c
Because homeostasis is the state of steady internal, physical, and chemical conditions
<span>Enzymes</span> are proteins that allow certain chemical reactions to take place much quicker than the reactions would occur on their own. Enzymes function as catalysts, which means that they speed up the rate at which metabolic processes and reactions occur in living organisms. Usually, the processes or reactions are part of a cycle or pathway, with separate reactions at each step. Each step of a pathway or cycle usually requires a specific enzyme. Without the specific enzyme to catalyze a reaction, the cycle or pathway cannot be completed.
<span>In a ecosystem,rocks are an example of an abiotic factor because they are not a living part of the environment. From context of the statement, an abiotic factor is the non-living part of the environment in a ecosystem.</span>