1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svet-max [94.6K]
3 years ago
12

Math Extended Problems Sequences

Mathematics
1 answer:
zheka24 [161]3 years ago
3 0
I think C is the right answer
You might be interested in
Is this expression a perfect square trinomial?
Katyanochek1 [597]
Yes it is (10x-y)^2 is the answer of it
6 0
4 years ago
Help ASAP before 2:10
kirill115 [55]

Answer:3 choice

Step-by-step explanation:

When you have this || you put the opposite mark

5 0
3 years ago
Read 2 more answers
The total cost of the trip can be found by adding these components: Entrance fee per student: $5(29) Lunch costs: $4(29 + 6) Bus
N76 [4]

Given:

Entrance fee per student: $5(29)

Lunch costs: $4(29 + 6)

Bus fees: $25 + 8($2 + $3)

Total cost: 5(29) + 4(35) + 25 + 8(5)

To find:

The equivalent expressions of the total cost that use the properties of operations to simplify the math.

Solution:

We have,

Total cost = 5(29) + 4(35) + 25 + 8(5)

To simply this expression, we need to write 29 and 35 in the expand form or as the sum of their place values because it is easy to multiply a number with multiply of 10 and single digit.

Total cost = 5(20+9) + 4(30+5) + 25 + 40

Therefore, the correct option is B.

6 0
3 years ago
Read 2 more answers
(x+2/x-7) - (x^2+4x+13/x^2-4x-21)
olya-2409 [2.1K]

Answer:

x = -2.98079 or x = -1.15272 or x = 0.892002 or x = 4.24151

Step-by-step explanation:

Solve for x:

-x^2 + x + 14 + 2/x - 13/x^2 = 0

Bring -x^2 + x + 14 + 2/x - 13/x^2 together using the common denominator x^2:

(-x^4 + x^3 + 14 x^2 + 2 x - 13)/x^2 = 0

Multiply both sides by x^2:

-x^4 + x^3 + 14 x^2 + 2 x - 13 = 0

Multiply both sides by -1:

x^4 - x^3 - 14 x^2 - 2 x + 13 = 0

Eliminate the cubic term by substituting y = x - 1/4:

13 - 2 (y + 1/4) - 14 (y + 1/4)^2 - (y + 1/4)^3 + (y + 1/4)^4 = 0

Expand out terms of the left hand side:

y^4 - (115 y^2)/8 - (73 y)/8 + 2973/256 = 0

Add (sqrt(2973) y^2)/8 + (115 y^2)/8 + (73 y)/8 to both sides:

y^4 + (sqrt(2973) y^2)/8 + 2973/256 = (sqrt(2973) y^2)/8 + (115 y^2)/8 + (73 y)/8

y^4 + (sqrt(2973) y^2)/8 + 2973/256 = (y^2 + sqrt(2973)/16)^2:

(y^2 + sqrt(2973)/16)^2 = (sqrt(2973) y^2)/8 + (115 y^2)/8 + (73 y)/8

Add 2 (y^2 + sqrt(2973)/16) λ + λ^2 to both sides:

(y^2 + sqrt(2973)/16)^2 + 2 λ (y^2 + sqrt(2973)/16) + λ^2 = (73 y)/8 + (sqrt(2973) y^2)/8 + (115 y^2)/8 + 2 λ (y^2 + sqrt(2973)/16) + λ^2

(y^2 + sqrt(2973)/16)^2 + 2 λ (y^2 + sqrt(2973)/16) + λ^2 = (y^2 + sqrt(2973)/16 + λ)^2:

(y^2 + sqrt(2973)/16 + λ)^2 = (73 y)/8 + (sqrt(2973) y^2)/8 + (115 y^2)/8 + 2 λ (y^2 + sqrt(2973)/16) + λ^2

(73 y)/8 + (sqrt(2973) y^2)/8 + (115 y^2)/8 + 2 λ (y^2 + sqrt(2973)/16) + λ^2 = (2 λ + 115/8 + sqrt(2973)/8) y^2 + (73 y)/8 + (sqrt(2973) λ)/8 + λ^2:

(y^2 + sqrt(2973)/16 + λ)^2 = y^2 (2 λ + 115/8 + sqrt(2973)/8) + (73 y)/8 + (sqrt(2973) λ)/8 + λ^2

Complete the square on the right hand side:

(y^2 + sqrt(2973)/16 + λ)^2 = (y sqrt(2 λ + 115/8 + sqrt(2973)/8) + 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8)))^2 + (4 (2 λ + 115/8 + sqrt(2973)/8) (λ^2 + (sqrt(2973) λ)/8) - 5329/64)/(4 (2 λ + 115/8 + sqrt(2973)/8))

To express the right hand side as a square, find a value of λ such that the last term is 0.

This means 4 (2 λ + 115/8 + sqrt(2973)/8) (λ^2 + (sqrt(2973) λ)/8) - 5329/64 = 1/64 (512 λ^3 + 96 sqrt(2973) λ^2 + 3680 λ^2 + 460 sqrt(2973) λ + 11892 λ - 5329) = 0.

Thus the root λ = 1/48 (-3 sqrt(2973) - 115) + 1/12 (-i sqrt(3) + 1) ((3 i sqrt(10705335) - 8327)/2)^(1/3) + (173 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(10705335) - 8327)^(1/3)) allows the right hand side to be expressed as a square.

(This value will be substituted later):

(y^2 + sqrt(2973)/16 + λ)^2 = (y sqrt(2 λ + 115/8 + sqrt(2973)/8) + 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8)))^2

Take the square root of both sides:

y^2 + sqrt(2973)/16 + λ = y sqrt(2 λ + 115/8 + sqrt(2973)/8) + 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8)) or y^2 + sqrt(2973)/16 + λ = -y sqrt(2 λ + 115/8 + sqrt(2973)/8) - 73/(16 sqrt(2 λ + 115/8 + sqrt(2973)/8))

Solve using the quadratic formula:

y = 1/8 (sqrt(2) sqrt(16 λ + 115 + sqrt(2973)) + sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 + 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973)))) or y = 1/8 (sqrt(2) sqrt(16 λ + 115 + sqrt(2973)) - sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 + 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973)))) or y = 1/8 (sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 - 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973))) - sqrt(2) sqrt(16 λ + 115 + sqrt(2973))) or y = 1/8 (-sqrt(2) sqrt(16 λ + 115 + sqrt(2973)) - sqrt(2) sqrt((10252 - 32 sqrt(2973) λ - 256 λ^2 - 292 sqrt(2) sqrt(16 λ + 115 + sqrt(2973)))/(16 λ + 115 + sqrt(2973)))) where λ = 1/48 (-3 sqrt(2973) - 115) + 1/12 (-i sqrt(3) + 1) ((3 i sqrt(10705335) - 8327)/2)^(1/3) + (173 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(10705335) - 8327)^(1/3))

Substitute λ = 1/48 (-3 sqrt(2973) - 115) + 1/12 (-i sqrt(3) + 1) ((3 i sqrt(10705335) - 8327)/2)^(1/3) + (173 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(10705335) - 8327)^(1/3)) and approximate:

y = -3.23079 or y = -1.40272 or y = 0.642002 or y = 3.99151

Substitute back for y = x - 1/4:

x - 1/4 = -3.23079 or y = -1.40272 or y = 0.642002 or y = 3.99151

Add 1/4 to both sides:

x = -2.98079 or y = -1.40272 or y = 0.642002 or y = 3.99151

Substitute back for y = x - 1/4:

x = -2.98079 or x - 1/4 = -1.40272 or y = 0.642002 or y = 3.99151

Add 1/4 to both sides:

x = -2.98079 or x = -1.15272 or y = 0.642002 or y = 3.99151

Substitute back for y = x - 1/4:

x = -2.98079 or x = -1.15272 or x - 1/4 = 0.642002 or y = 3.99151

Add 1/4 to both sides:

x = -2.98079 or x = -1.15272 or x = 0.892002 or y = 3.99151

Substitute back for y = x - 1/4:

x = -2.98079 or x = -1.15272 or x = 0.892002 or x - 1/4 = 3.99151

Add 1/4 to both sides:

Answer: x = -2.98079 or x = -1.15272 or x = 0.892002 or x = 4.24151

7 0
3 years ago
Read 2 more answers
Find one value of x that is a solution to the equation:<br>(x^2– 8)^2 + x^2 – 8 = 20<br>x=​
Kipish [7]

Answer:

x = 2 sqrt(3) or x = -2 sqrt(3) or x = sqrt(3) or x = -sqrt(3)

Step-by-step explanation:

Solve for x:

-8 + x^2 + (x^2 - 8)^2 = 20

Expand out terms of the left hand side:

x^4 - 15 x^2 + 56 = 20

Subtract 20 from both sides:

x^4 - 15 x^2 + 36 = 0

Substitute y = x^2:

y^2 - 15 y + 36 = 0

The left hand side factors into a product with two terms:

(y - 12) (y - 3) = 0

Split into two equations:

y - 12 = 0 or y - 3 = 0

Add 12 to both sides:

y = 12 or y - 3 = 0

Substitute back for y = x^2:

x^2 = 12 or y - 3 = 0

Take the square root of both sides:

x = 2 sqrt(3) or x = -2 sqrt(3) or y - 3 = 0

Add 3 to both sides:

x = 2 sqrt(3) or x = -2 sqrt(3) or y = 3

Substitute back for y = x^2:

x = 2 sqrt(3) or x = -2 sqrt(3) or x^2 = 3

Take the square root of both sides:

Answer: x = 2 sqrt(3) or x = -2 sqrt(3) or x = sqrt(3) or x = -sqrt(3)

8 0
3 years ago
Other questions:
  • What ordered pair represents the
    10·1 answer
  • Express 11.16dm3 in kiloliters.
    13·1 answer
  • The functions f and g are defined as follows f(x)=5x+3/6x+7 and g(x)= square root sign x^2-4x
    15·1 answer
  • This year, Benny is 12 years old, and his mom is 48 years old.
    6·1 answer
  • Which expressions are in simplest form? Check all that apply.
    12·2 answers
  • What is 60,000 + 3,000 + 20 + 9 in standard form?
    14·2 answers
  • Is one for greater than listen or equal to 0.4
    9·1 answer
  • Mt. Everest, the highst elevation in asia, is 29,035 feet above sea level. The Dead Sea, the lowest elevation, is 1,349 feet bel
    15·1 answer
  • Solve for x -12=-32+55
    11·2 answers
  • 6) Convert 2pie/3 to degrees<br> A) 30°<br> B) 60°<br> 120°<br> D) 240°
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!