<span> Given the relationship between </span>wavelength<span> and </span>frequency<span> — the </span>higher<span>the </span>frequency<span>, the shorter the </span>wavelength<span> — it follows that short wavelengths are</span>more<span> energetic than long wavelengths.</span>
Answer:
<em>The new force is 2/3 of the original force</em>
Explanation:
<u>Coulomb's Law
</u>
The electrical force between two charged objects is directly proportional to the product of their charges and inversely proportional to the square of the distance between the two objects.
Written as a formula:

Where:

q1, q2 = the objects' charge
d= The distance between the objects
Suppose the first charge is doubled (2q1) and the second charge is one-third of the original charge (q2/3). Now the force is:

Factoring out 2/3:

Substituting the original force:

The new force is 2/3 of the original force
answer:
heating the material
placing the material in a magnetic field of opposite polarity
hitting the material
You would need to use the equation a= (v-u)÷t
You need to substitute in the correct numbers.
a= (10-20)÷1
Your answer is -10m/s^2
Answer: D
Explanation: there is less light at that point.