Answer:
4.2 m
Explanation:
Note: If energy is conserved, i.e no work is done against friction
Work input = work output.
Work output = Force output × distance,
Work input = force input × distance moved moved.
Therefore,
input force×distance moved = output force × distance moved........................Equation 1
Given: input force = 80 N, output force = 240 N, output distance = 1.4 m
Let input distance = d
Substitute into equation 1
80×d = 240×1.4
80d = 336
d = 336/80
d = 4.2 m.
Thus the rope around the pulley must be pulled 4.2 m
Answer:
atoms cannot go bad
Explanation:
Because they stay alive and get good nutriants
Answer:
A) 12.57 m
B) 5 RPM
C) 3.142 m/s
Explanation:
A) Distance covered in 1 Revolution:
The formula that gives the relationship between the arc length or distance covered during circular motion to the angle subtended or the revolutions, is given as follows:
s = rθ
where,
s = distance covered = ?
r = radius of circle = 2 m
θ = Angle = 2π radians (For 1 complete Revolution)
Therefore,
s = (2 m)(2π radians)
<u>s = 12.57 m</u>
B) Angular Speed:
The formula for angular speed is given as:
ω = θ/t
where,
ω = angular speed = ?
θ = angular distance covered = 15 revolutions
t = time taken = 3 min
Therefore,
ω = 15 rev/3 min
<u>ω = 5 RPM</u>
C) Linear Speed:
The formula that gives the the linear speed of an object moving in a circular path is given as:
v = rω
where,
v = linear speed = ?
r = radius = 2 m
ω = Angular Speed in rad/s = (15 rev/min)(2π rad/1 rev)(1 min/60 s) = 1.571 rad/s
Therefore,
v = (2 m)(1.571 rad/s)
<u>v = 3.142 m/s</u>
Is there suppose to be an image?