1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katovenus [111]
3 years ago
14

I

Mathematics
1 answer:
BlackZzzverrR [31]3 years ago
3 0

Answer: (1) mean = 9.46; standard deviation = 3.74

Step-by-step explanation:

You might be interested in
Given the two equations below the lines are parallel perpendicular or neither​
Alecsey [184]

Answer:

○ b Parallel

Step-by-step explanation:

If you take a look at each group of coefficients [2x and 5y, 4x and 10y], they have a proportional relationship, so when converting from <em>Linear Standard Form</em> to <em>Slope-Intercept</em><em> </em><em>Form</em>,<em> </em>they will always have an exact same <em>rate</em><em> </em><em>of</em><em> </em><em>change</em><em> </em>[<em>slope</em>] of −⅖.

I am joyous to assist you anytime.

3 0
3 years ago
If your total annual income was $30,694.95, then how much did you earn per month, on average?​
tatuchka [14]

In average, your monthly income is $2,557.91

<h3>How much did you earn per month, on average?​</h3>

We know that in the year you win a total of $30,694.95, and we want to know how much you win per month.

We know that in a year there are 12 months. To get how much you win, in average, in one of these months, you need to take the quotient between the total amount that you earn in one year, and the number of months in a year.

It gives:

N = $30,694.95/12 = $2,557.91

In average, your monthly income is $2,557.91

If you want to learn more about quotients:

brainly.com/question/629998

#SPJ1

8 0
2 years ago
Calculus 2. Please help
Anarel [89]

Answer:

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}}} \, dx = \infty

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle  \lim_{x \to c^+} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

U-Solve

Improper Integrals

Exponential Integral Function:                                                                              \displaystyle \int {\frac{e^x}{x}} \, dx = Ei(x) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \int\limits^1_0 {\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Rewrite [Improper Integral]:                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \int\limits^1_a {\frac{e^{-x^2}}{x} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = -x^2
  2. Differentiate [Basic Power Rule]:                                                                 \displaystyle \frac{du}{dx} = -2x
  3. [Derivative] Rewrite:                                                                                     \displaystyle du = -2x \ dx

<em>Rewrite u-substitution to format u-solve.</em>

  1. Rewrite <em>du</em>:                                                                                                     \displaystyle dx = \frac{-1}{2x} \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {-\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Substitute in variables:                                                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {\frac{e^{u}}{-2u} \, du
  3. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}\int\limits^1_a {\frac{e^{u}}{u} \, du
  4. [Integral] Substitute [Exponential Integral Function]:                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a
  5. Back-Substitute:                                                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a
  6. Evaluate [Integration Rule - FTC 1]:                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]
  7. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{Ei(-1) - Ei(a)}{2}
  8. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \infty

∴  \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx  diverges.

Topic: Multivariable Calculus

7 0
3 years ago
Find the surface area of the prism.
Otrada [13]
The dimensions of the prism are 3 m by 4 m by 5 m.

Area = 2(3 * 4 + 3 * 5 + 4 * 5) = 2(12 + 15 + 20) = 2(47) = 94 m^2
8 0
3 years ago
Find the product (-21) x (-30)​
nekit [7.7K]

Answer:

630

Step-by-step explanation:

(-21) × (-30)

21×30 Since 2 negatives multiplied to make a positive

Answer is 630

8 0
3 years ago
Other questions:
  • Which expression is equivalent to
    6·2 answers
  • A machine's efficiency can be greater than 100 percent. <br> a. True <br> b. False
    6·1 answer
  • A farmer has a bale of hay with mass of 36 kilograms. How many milligrams of hay are in the bale?
    10·1 answer
  • What is the value of (12-8)^2+21-4
    7·2 answers
  • If you were to plot (10, -2) and (-3, 8), what two quadrants would you be in?
    5·1 answer
  • If L is the line through the point P=(3,2,1) and parallel to the vector v=⟨2,1,−3⟩, what is an equation of the plane that contai
    11·1 answer
  • Law of cosines <br> please show your work :) <br> Will mark as brainlest
    15·1 answer
  • Sophie Ruth is eating a
    12·1 answer
  • Which is the best approximation of the volume of a cylinder with a radius of 10 mm, and a height of 5 mm? Use 3.14 for pi.
    15·1 answer
  • Identify the expression that has the largest value when a&lt;-1<br><br> 1-2a <br> a<br> a^2 <br> a^3
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!